add centered variant of RMS Prop

This commit is contained in:
Connor Olding 2017-07-21 19:46:44 +00:00
parent fb22f64716
commit c2bb2cfcd5

View file

@ -323,13 +323,56 @@ class RMSprop(Optimizer):
self.g = np.zeros_like(dW)
# basically apply a first-order low-pass filter to delta squared
self.g[:] = self.mu * self.g + (1 - self.mu) * dW * dW
self.g[:] = self.mu * self.g + (1 - self.mu) * np.square(dW)
# equivalent (though numerically different?):
#self.g += (dW * dW - self.g) * (1 - self.mu)
#self.g += (np.square(dW) - self.g) * (1 - self.mu)
# finally sqrt it to complete the running root-mean-square approximation
return -self.lr * dW / (np.sqrt(self.g) + self.eps)
class RMSpropCentered(Optimizer):
# referenced TensorFlow/PyTorch.
# paper: https://arxiv.org/pdf/1308.0850v5.pdf
def __init__(self, lr=1e-4, aleph=0.95, momentum=0.9, eps=1e-8):
self.aleph = _f(aleph)
self.momentum = _f(momentum)
self.eps = _f(eps)
super().__init__(lr)
def reset(self):
self.g = None
self.mt = None
self.vt = None
self.delta = None
def compute(self, dW, W):
if self.g is None:
self.g = np.zeros_like(dW)
if self.mt is None:
self.mt = np.zeros_like(dW)
if self.vt is None:
self.vt = np.zeros_like(dW)
if self.delta is None:
self.delta = np.zeros_like(dW)
self.mt[:] = self.aleph * self.mt + (1 - self.aleph) * dW
self.vt[:] = self.aleph * self.vt + (1 - self.aleph) * np.square(dW)
# PyTorch has the epsilon outside of the sqrt,
# TensorFlow and the paper have it within.
# in onn, we generally do it outside, as this seems to work better.
temp = dW / (np.sqrt(self.vt - np.square(self.mt)) + self.eps)
# TensorFlow does it this way.
self.delta[:] = self.momentum * self.delta + self.lr * temp
return -self.delta
# PyTorch does it this way.
#self.delta[:] = self.momentum * self.delta + temp
#return -self.lr * self.delta
# they are equivalent only when LR is constant, which it might not be.
class Adam(Optimizer):
# paper: https://arxiv.org/abs/1412.6980
# Adam generalizes* RMSprop, and