activation layers inherit a dummy class
This commit is contained in:
parent
cb4e6d3725
commit
bd1e80b8de
1 changed files with 21 additions and 17 deletions
|
@ -7,7 +7,11 @@ from .float import *
|
|||
from .layer_base import *
|
||||
|
||||
|
||||
class Identity(Layer):
|
||||
class Activation(Layer):
|
||||
pass
|
||||
|
||||
|
||||
class Identity(Activation):
|
||||
def forward(self, X):
|
||||
return X
|
||||
|
||||
|
@ -15,7 +19,7 @@ class Identity(Layer):
|
|||
return dY
|
||||
|
||||
|
||||
class Sigmoid(Layer): # aka Logistic, Expit (inverse of Logit)
|
||||
class Sigmoid(Activation): # aka Logistic, Expit (inverse of Logit)
|
||||
def forward(self, X):
|
||||
self.sig = sigmoid(X)
|
||||
return self.sig
|
||||
|
@ -24,7 +28,7 @@ class Sigmoid(Layer): # aka Logistic, Expit (inverse of Logit)
|
|||
return dY * self.sig * (1 - self.sig)
|
||||
|
||||
|
||||
class Softplus(Layer):
|
||||
class Softplus(Activation):
|
||||
# integral of Sigmoid.
|
||||
|
||||
def forward(self, X):
|
||||
|
@ -35,7 +39,7 @@ class Softplus(Layer):
|
|||
return dY * sigmoid(self.X)
|
||||
|
||||
|
||||
class Tanh(Layer):
|
||||
class Tanh(Activation):
|
||||
def forward(self, X):
|
||||
self.sig = np.tanh(X)
|
||||
return self.sig
|
||||
|
@ -44,7 +48,7 @@ class Tanh(Layer):
|
|||
return dY * (1 - self.sig * self.sig)
|
||||
|
||||
|
||||
class LeCunTanh(Layer):
|
||||
class LeCunTanh(Activation):
|
||||
# paper: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
|
||||
# paper: http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf
|
||||
# scaled such that f([-1, 1]) = [-1, 1].
|
||||
|
@ -59,7 +63,7 @@ class LeCunTanh(Layer):
|
|||
return dY * (2 / 3 * 1.7159) * (1 - self.sig * self.sig)
|
||||
|
||||
|
||||
class Relu(Layer):
|
||||
class Relu(Activation):
|
||||
def forward(self, X):
|
||||
self.cond = X >= 0
|
||||
return np.where(self.cond, X, 0)
|
||||
|
@ -68,7 +72,7 @@ class Relu(Layer):
|
|||
return np.where(self.cond, dY, 0)
|
||||
|
||||
|
||||
class Elu(Layer):
|
||||
class Elu(Activation):
|
||||
# paper: https://arxiv.org/abs/1511.07289
|
||||
|
||||
def __init__(self, alpha=1):
|
||||
|
@ -84,7 +88,7 @@ class Elu(Layer):
|
|||
return dY * np.where(self.cond, 1, self.neg + 1)
|
||||
|
||||
|
||||
class Swish(Layer):
|
||||
class Swish(Activation):
|
||||
# paper: https://arxiv.org/abs/1710.05941
|
||||
# the beta parameter here is constant instead of trainable.
|
||||
# note that Swish generalizes both SiLU and an approximation of GELU.
|
||||
|
@ -107,7 +111,7 @@ class Silu(Swish):
|
|||
self.scale = _1
|
||||
|
||||
|
||||
class GeluApprox(Layer):
|
||||
class GeluApprox(Activation):
|
||||
# paper: https://arxiv.org/abs/1606.08415
|
||||
# plot: https://www.desmos.com/calculator/ydzgtccsld
|
||||
|
||||
|
@ -115,7 +119,7 @@ class GeluApprox(Layer):
|
|||
self.scale = _f(1.704)
|
||||
|
||||
|
||||
class Softmax(Layer):
|
||||
class Softmax(Activation):
|
||||
def forward(self, X):
|
||||
alpha = np.max(X, axis=-1, keepdims=True)
|
||||
num = np.exp(X - alpha)
|
||||
|
@ -139,7 +143,7 @@ class LogSoftmax(Softmax):
|
|||
return dY - np.sum(dY, axis=-1, keepdims=True) * self.sm
|
||||
|
||||
|
||||
class Cos(Layer):
|
||||
class Cos(Activation):
|
||||
# performs well on MNIST for some strange reason.
|
||||
|
||||
def forward(self, X):
|
||||
|
@ -150,7 +154,7 @@ class Cos(Layer):
|
|||
return dY * -np.sin(self.X)
|
||||
|
||||
|
||||
class Selu(Layer):
|
||||
class Selu(Activation):
|
||||
# paper: https://arxiv.org/abs/1706.02515
|
||||
|
||||
def __init__(self, alpha=1.67326324, lamb=1.05070099):
|
||||
|
@ -169,7 +173,7 @@ class Selu(Layer):
|
|||
|
||||
# more
|
||||
|
||||
class TanhTest(Layer):
|
||||
class TanhTest(Activation):
|
||||
def forward(self, X):
|
||||
self.sig = np.tanh(1 / 2 * X)
|
||||
return 2.4004 * self.sig
|
||||
|
@ -178,7 +182,7 @@ class TanhTest(Layer):
|
|||
return dY * (1 / 2 * 2.4004) * (1 - self.sig * self.sig)
|
||||
|
||||
|
||||
class ExpGB(Layer):
|
||||
class ExpGB(Activation):
|
||||
# an output layer for one-hot classification problems.
|
||||
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
|
||||
# paper: https://arxiv.org/abs/1707.04199
|
||||
|
@ -196,7 +200,7 @@ class ExpGB(Layer):
|
|||
return dY
|
||||
|
||||
|
||||
class CubicGB(Layer):
|
||||
class CubicGB(Activation):
|
||||
# an output layer for one-hot classification problems.
|
||||
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
|
||||
# paper: https://arxiv.org/abs/1707.04199
|
||||
|
@ -217,7 +221,7 @@ class CubicGB(Layer):
|
|||
return dY
|
||||
|
||||
|
||||
class Arcsinh(Layer):
|
||||
class Arcsinh(Activation):
|
||||
def forward(self, X):
|
||||
self.X = X
|
||||
return np.arcsinh(X)
|
||||
|
@ -226,7 +230,7 @@ class Arcsinh(Layer):
|
|||
return dY / np.sqrt(self.X * self.X + 1)
|
||||
|
||||
|
||||
class HardClip(Layer): # aka HardTanh when at default settings
|
||||
class HardClip(Activation): # aka HardTanh when at default settings
|
||||
def __init__(self, lower=-1.0, upper=1.0):
|
||||
super().__init__()
|
||||
self.lower = _f(lower)
|
||||
|
|
Loading…
Reference in a new issue