.
This commit is contained in:
parent
7e5bb731da
commit
a8952bebf5
2 changed files with 31 additions and 11 deletions
34
optim_nn.py
34
optim_nn.py
|
@ -14,8 +14,15 @@ import sys
|
||||||
def lament(*args, **kwargs):
|
def lament(*args, **kwargs):
|
||||||
print(*args, file=sys.stderr, **kwargs)
|
print(*args, file=sys.stderr, **kwargs)
|
||||||
|
|
||||||
def log(left, right):
|
_log_was_update = False
|
||||||
lament("{:>20}: {}".format(left, right))
|
def log(left, right, update=False):
|
||||||
|
s = "\x1B[1m {:>20}:\x1B[0m {}".format(left, right)
|
||||||
|
global _log_was_update
|
||||||
|
if update and _log_was_update:
|
||||||
|
lament('\x1B[F' + s)
|
||||||
|
else:
|
||||||
|
lament(s)
|
||||||
|
_log_was_update = update
|
||||||
|
|
||||||
class Dummy:
|
class Dummy:
|
||||||
pass
|
pass
|
||||||
|
@ -575,7 +582,10 @@ def run(program, args=None):
|
||||||
ritual = 'default',
|
ritual = 'default',
|
||||||
restart_optim = False, # restarts also reset internal state of optimizer
|
restart_optim = False, # restarts also reset internal state of optimizer
|
||||||
warmup = True, # train a couple epochs on gaussian noise and reset
|
warmup = True, # train a couple epochs on gaussian noise and reset
|
||||||
|
|
||||||
|
# logging/output
|
||||||
log10_loss = True, # personally, i'm sick of looking linear loss values!
|
log10_loss = True, # personally, i'm sick of looking linear loss values!
|
||||||
|
#fancy_logs = True, # unimplemented
|
||||||
|
|
||||||
problem = 3,
|
problem = 3,
|
||||||
compare = (
|
compare = (
|
||||||
|
@ -629,10 +639,18 @@ def run(program, args=None):
|
||||||
def print_error(name, inputs, outputs, comparison=None):
|
def print_error(name, inputs, outputs, comparison=None):
|
||||||
predicted = model.forward(inputs)
|
predicted = model.forward(inputs)
|
||||||
err = ritual.measure(predicted, outputs)
|
err = ritual.measure(predicted, outputs)
|
||||||
log(name + " loss", "{:12.6e}".format(err))
|
|
||||||
if config.log10_loss:
|
if config.log10_loss:
|
||||||
log(name + " log10-loss", "{:+6.3f}".format(np.log10(err)))
|
print(name, "{:12.6e}".format(err))
|
||||||
elif comparison:
|
if comparison:
|
||||||
|
err10 = np.log10(err)
|
||||||
|
cmp10 = np.log10(comparison)
|
||||||
|
color = '\x1B[31m' if err10 > cmp10 else '\x1B[32m'
|
||||||
|
log(name + " log10-loss", "{:+6.3f} {}({:+6.3f})\x1B[0m".format(err10, color, err10 - cmp10))
|
||||||
|
else:
|
||||||
|
log(name + " log10-loss", "{:+6.3f}".format(err, np.log10(err)))
|
||||||
|
else:
|
||||||
|
log(name + " loss", "{:12.6e}".format(err))
|
||||||
|
if comparison:
|
||||||
fmt = "10**({:+7.4f}) times"
|
fmt = "10**({:+7.4f}) times"
|
||||||
log("improvement", fmt.format(np.log10(comparison / err)))
|
log("improvement", fmt.format(np.log10(comparison / err)))
|
||||||
return err
|
return err
|
||||||
|
@ -696,10 +714,12 @@ def run(program, args=None):
|
||||||
|
|
||||||
if config.log10_loss:
|
if config.log10_loss:
|
||||||
fmt = "epoch {:4.0f}, rate {:10.8f}, log10-loss {:+6.3f}"
|
fmt = "epoch {:4.0f}, rate {:10.8f}, log10-loss {:+6.3f}"
|
||||||
log("info", fmt.format(learner.epoch + 1, learner.rate, np.log10(avg_loss)))
|
log("info", fmt.format(learner.epoch + 1, learner.rate, np.log10(avg_loss)),
|
||||||
|
update=True)
|
||||||
else:
|
else:
|
||||||
fmt = "epoch {:4.0f}, rate {:10.8f}, loss {:12.6e}"
|
fmt = "epoch {:4.0f}, rate {:10.8f}, loss {:12.6e}"
|
||||||
log("info", fmt.format(learner.epoch + 1, learner.rate, avg_loss))
|
log("info", fmt.format(learner.epoch + 1, learner.rate, avg_loss),
|
||||||
|
update=True)
|
||||||
|
|
||||||
measure_error()
|
measure_error()
|
||||||
|
|
||||||
|
|
|
@ -396,7 +396,7 @@ class Sum(Layer):
|
||||||
class Sigmoid(Layer): # aka Logistic
|
class Sigmoid(Layer): # aka Logistic
|
||||||
def F(self, X):
|
def F(self, X):
|
||||||
self.sig = sigmoid(X)
|
self.sig = sigmoid(X)
|
||||||
return X * self.sig
|
return self.sig
|
||||||
|
|
||||||
def dF(self, dY):
|
def dF(self, dY):
|
||||||
return dY * self.sig * (1 - self.sig)
|
return dY * self.sig * (1 - self.sig)
|
||||||
|
@ -404,7 +404,7 @@ class Sigmoid(Layer): # aka Logistic
|
||||||
class Tanh(Layer):
|
class Tanh(Layer):
|
||||||
def F(self, X):
|
def F(self, X):
|
||||||
self.sig = np.tanh(X)
|
self.sig = np.tanh(X)
|
||||||
return X * self.sig
|
return self.sig
|
||||||
|
|
||||||
def dF(self, dY):
|
def dF(self, dY):
|
||||||
return dY * (1 - self.sig * self.sig)
|
return dY * (1 - self.sig * self.sig)
|
||||||
|
|
Loading…
Reference in a new issue