This commit is contained in:
Connor Olding 2017-02-14 13:02:30 -08:00
parent 8c79667904
commit 9cba495ce4
2 changed files with 61 additions and 48 deletions

View file

@ -7,6 +7,7 @@
# numpy scipy h5py sklearn dotmap
from optim_nn_core import *
from optim_nn_core import _check, _f
import sys
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
@ -31,9 +32,9 @@ class SomethingElse(Loss):
# plot: https://www.desmos.com/calculator/fagjg9vuz7
def __init__(self, a=4/3):
assert 1 <= a <= 2, "parameter out of range"
self.a = nf(a / 2)
self.b = nf(2 / a)
self.c = nf(2 / a - 1)
self.a = _f(a / 2)
self.b = _f(2 / a)
self.c = _f(2 / a - 1)
def f(self, r):
return self.a * np.abs(r)**self.b
@ -49,7 +50,7 @@ class LayerNorm(Layer):
def __init__(self, eps=1e-3, axis=-1):
super().__init__()
self.eps = nf(eps)
self.eps = _f(eps)
self.axis = int(axis)
def F(self, X):
@ -96,7 +97,7 @@ class StochMRitual(Ritual):
def __init__(self, learner=None, loss=None, mloss=None, gamma=0.5):
super().__init__(learner, loss, mloss)
self.gamma = nf(gamma)
self.gamma = _f(gamma)
def prepare(self, model):
self.W = np.copy(model.W)
@ -127,9 +128,9 @@ class StochMRitual(Ritual):
class NoisyRitual(Ritual):
def __init__(self, learner=None, loss=None, mloss=None,
input_noise=0, output_noise=0, gradient_noise=0):
self.input_noise = nf(input_noise) # TODO: implement
self.output_noise = nf(output_noise) # TODO: implement
self.gradient_noise = nf(gradient_noise)
self.input_noise = _f(input_noise)
self.output_noise = _f(output_noise)
self.gradient_noise = _f(gradient_noise)
super().__init__(learner, loss, mloss)
def learn(self, inputs, outputs):
@ -261,6 +262,7 @@ def toy_data(train_samples, valid_samples, problem=2):
if problem == 1:
from sklearn.datasets import make_friedman1
inputs, outputs = make_friedman1(total_samples)
inputs, outputs = _f(inputs), _f(outputs)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
@ -274,6 +276,7 @@ def toy_data(train_samples, valid_samples, problem=2):
elif problem == 2:
from sklearn.datasets import make_friedman2
inputs, outputs = make_friedman2(total_samples)
inputs, outputs = _f(inputs), _f(outputs)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
@ -287,6 +290,7 @@ def toy_data(train_samples, valid_samples, problem=2):
elif problem == 3:
from sklearn.datasets import make_friedman3
inputs, outputs = make_friedman3(total_samples)
inputs, outputs = _f(inputs), _f(outputs)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
@ -463,7 +467,7 @@ def run(program, args=[]):
# misc
init = 'he_normal',
loss = 'mse',
loss = 'msee',
mloss = 'mse',
ritual = 'default',
restart_optim = False, # restarts also reset internal state of optimizer
@ -568,9 +572,9 @@ def run(program, args=[]):
if config.log_fn is not None:
log('saving losses', config.log_fn)
np.savez_compressed(config.log_fn,
batch_losses=nfa(batch_losses),
train_losses=nfa(train_losses),
valid_losses=nfa(valid_losses))
batch_losses=np.array(batch_losses, dtype=_f),
train_losses=np.array(train_losses, dtype=_f),
valid_losses=np.array(valid_losses, dtype=_f))
# Evaluation {{{2
# TODO: write this portion again

View file

@ -1,9 +1,5 @@
import numpy as np
# ugly shorthand:
nf = np.float32
nfa = lambda x: np.array(x, dtype=nf)
ni = np.int
nia = lambda x: np.array(x, dtype=ni)
_f = np.float32
# just for speed, not strictly essential:
from scipy.special import expit as sigmoid
@ -12,6 +8,19 @@ from scipy.special import expit as sigmoid
from collections import defaultdict
_layer_counters = defaultdict(lambda: 0)
def _check(a):
assert isinstance(a, np.ndarray) or type(a) == _f, type(a)
assert a.dtype == _f, a.dtype
return a
_0 = _f(0)
_1 = _f(1)
_2 = _f(2)
_inv2 = _f(1/2)
_sqrt2 = _f(np.sqrt(2))
_invsqrt2 = _f(1/np.sqrt(2))
_pi = _f(np.pi)
# Initializations {{{1
# note: these are currently only implemented for 2D shapes.
@ -54,7 +63,7 @@ class Absolute(Loss):
class Optimizer:
def __init__(self, alpha=0.1):
self.alpha = nf(alpha)
self.alpha = _f(alpha)
self.reset()
def reset(self):
@ -71,9 +80,9 @@ class Optimizer:
class Momentum(Optimizer):
def __init__(self, alpha=0.01, lamb=0, mu=0.9, nesterov=False):
self.alpha = np.asfarray(alpha) # learning rate
self.lamb = np.asfarray(lamb) # weight decay
self.mu = np.asfarray(mu) # momentum
self.alpha = _f(alpha) # learning rate
self.lamb = _f(lamb) # weight decay
self.mu = _f(mu) # momentum
self.nesterov = bool(nesterov)
self.reset()
@ -100,9 +109,9 @@ class RMSprop(Optimizer):
# RMSprop.mu == 1
def __init__(self, alpha=0.0001, mu=0.99, eps=1e-8):
self.alpha = nf(alpha) # learning rate
self.mu = nf(mu) # decay term
self.eps = nf(eps)
self.alpha = _f(alpha) # learning rate
self.mu = _f(mu) # decay term
self.eps = _f(eps)
# one might consider the following equation when specifying mu:
# mu = e**(-1/t)
@ -141,12 +150,12 @@ class Adam(Optimizer):
# Adam.b2_t == 0
def __init__(self, alpha=0.001, b1=0.9, b2=0.999, b1_t=0.9, b2_t=0.999, eps=1e-8):
self.alpha = nf(alpha) # learning rate
self.b1 = nf(b1) # decay term
self.b2 = nf(b2) # decay term
self.b1_t_default = nf(b1_t) # decay term power t
self.b2_t_default = nf(b2_t) # decay term power t
self.eps = nf(eps)
self.alpha = _f(alpha) # learning rate
self.b1 = _f(b1) # decay term
self.b2 = _f(b2) # decay term
self.b1_t_default = _f(b1_t) # decay term power t
self.b2_t_default = _f(b2_t) # decay term power t
self.eps = _f(eps)
self.reset()
@ -317,8 +326,8 @@ class Input(Layer):
class Affine(Layer):
def __init__(self, a=1, b=0):
super().__init__()
self.a = nf(a)
self.b = nf(b)
self.a = _f(a)
self.b = _f(b)
def F(self, X):
return self.a * X + self.b
@ -355,7 +364,7 @@ class Elu(Layer):
def __init__(self, alpha=1):
super().__init__()
self.alpha = nf(alpha)
self.alpha = _f(alpha)
def F(self, X):
self.cond = X >= 0
@ -382,7 +391,7 @@ class GeluApprox(Layer):
class Dense(Layer):
def __init__(self, dim, init=init_he_uniform):
super().__init__()
self.dim = ni(dim)
self.dim = int(dim)
self.output_shape = (dim,)
self.weight_init = init
self.size = None
@ -459,8 +468,8 @@ class Model:
for node in self.ordered_nodes:
if node.size is not None:
self.param_count += node.size
self.W = np.zeros(self.param_count, dtype=nf)
self.dW = np.zeros(self.param_count, dtype=nf)
self.W = np.zeros(self.param_count, dtype=_f)
self.dW = np.zeros(self.param_count, dtype=_f)
offset = 0
for node in self.ordered_nodes:
@ -510,7 +519,7 @@ class Model:
weights = {}
def visitor(name, obj):
if isinstance(obj, h5py.Dataset):
weights[name.split('/')[-1]] = nfa(obj[:])
weights[name.split('/')[-1]] = np.array(obj[:], dtype=_f)
f.visititems(visitor)
f.close()
@ -532,9 +541,9 @@ class Model:
b_name = "dense_{}".format(b)
# TODO: write a Dense method instead of assigning directly
grp = f.create_group(b_name)
data = grp.create_dataset(b_name+'_W', denses[a].coeffs.shape, dtype=nf)
data = grp.create_dataset(b_name+'_W', denses[a].coeffs.shape, dtype=_f)
data[:] = denses[a].coeffs
data = grp.create_dataset(b_name+'_b', denses[a].biases.shape, dtype=nf)
data = grp.create_dataset(b_name+'_b', denses[a].biases.shape, dtype=_f)
data[:] = denses[a].biases
f.close()
@ -572,7 +581,7 @@ class Ritual: # i'm just making up names at this point
def train_batched(self, inputs, outputs, batch_size, return_losses=False):
self.en += 1
cumsum_loss = 0
cumsum_loss = _0
batch_count = inputs.shape[0] // batch_size
losses = []
for b in range(batch_count):
@ -593,7 +602,7 @@ class Ritual: # i'm just making up names at this point
cumsum_loss += batch_loss
if return_losses:
losses.append(batch_loss)
avg_loss = cumsum_loss / batch_count
avg_loss = cumsum_loss / _f(batch_count)
if return_losses:
return avg_loss, losses
else:
@ -607,7 +616,7 @@ class Learner:
def __init__(self, optim, epochs=100, rate=None):
assert isinstance(optim, Optimizer)
self.optim = optim
self.start_rate = optim.alpha if rate is None else float(rate)
self.start_rate = optim.alpha if rate is None else _f(rate)
self.epochs = int(epochs)
self.reset()
@ -661,8 +670,8 @@ class Learner:
class AnnealingLearner(Learner):
def __init__(self, optim, epochs=100, rate=None, halve_every=10):
self.halve_every = float(halve_every)
self.anneal = 0.5**(1/self.halve_every)
self.halve_every = _f(halve_every)
self.anneal = _f(0.5**(1/self.halve_every))
super().__init__(optim, epochs, rate)
def rate_at(self, epoch):
@ -670,7 +679,7 @@ class AnnealingLearner(Learner):
def cosmod(x):
# plot: https://www.desmos.com/calculator/hlgqmyswy2
return (1 + np.cos((x % 1) * np.pi)) / 2
return (_1 + np.cos((x % _1) * _pi)) * _inv2
class SGDR(Learner):
# Stochastic Gradient Descent with Restarts
@ -683,7 +692,7 @@ class SGDR(Learner):
restarts=0, restart_decay=0.5, callback=None,
expando=None):
self.restart_epochs = int(epochs)
self.decay = float(restart_decay)
self.decay = _f(restart_decay)
self.restarts = int(restarts)
self.restart_callback = callback
# TODO: rename expando to something not insane
@ -708,8 +717,8 @@ class SGDR(Learner):
def rate_at(self, epoch):
restart, sub_epoch, next_restart = self.split_num(epoch)
x = sub_epoch / next_restart
return self.start_rate * self.decay**restart * cosmod(x)
x = _f(sub_epoch) / _f(next_restart)
return self.start_rate * self.decay**_f(restart) * cosmod(x)
def next(self):
if not super().next():