add WIP YellowFin optimizer implementation

This commit is contained in:
Connor Olding 2017-07-02 02:55:19 +00:00
parent d8bf6d1c5b
commit 9706aaabbb
2 changed files with 142 additions and 5 deletions

137
onn.py
View file

@ -154,6 +154,143 @@ class FTML(Optimizer):
# subtract by weights to avoid having to override self.update.
return -self.zt / self.dt - W
class YellowFin(Momentum):
# paper: https://arxiv.org/abs/1706.03471
# knowyourmeme: http://cs.stanford.edu/~zjian/project/YellowFin/
# author's implementation: https://github.com/JianGoForIt/YellowFin/blob/master/tuner_utils/yellowfin.py
def __init__(self, alpha=0.1, mu=0.0, beta=0.999, curv_win_width=20):
self.alpha_default = _f(alpha)
self.mu_default = _f(mu)
self.beta = _f(beta)
self.curv_win_width = int(curv_win_width)
super().__init__(alpha=alpha, mu=mu, nesterov=False)
def reset(self):
super().reset()
self.alpha = self.alpha_default
self.mu = self.mu_default
self.step = 0
self.beta_t = self.beta
self.curv_win = np.zeros([self.curv_win_width,], dtype=np.float32)
self.h_min = None
self.h_max = None
self.grad_norm_squared_lpf = 0
self.h_min_lpf = 0
self.h_max_lpf = 0
self.grad_avg_lpf = 0
self.grad_avg_squared_lpf = 0
self.grad_norm_avg_lpf = 0
self.dist_to_opt_avg_lpf = 0
self.mu_lpf = 0
self.alpha_lpf = 0
def get_lr(self, mu_for_real):
return np.square(1 - np.sqrt(mu_for_real)) / self.h_min
def get_mu(self):
const_fact = np.square(self.dist_to_opt_avg) * np.square(self.h_min) / 2 / self.grad_var
#print('factor:', const_fact)
assert const_fact > -1e-7, "invalid factor"
coef = _f([-1, 3, -(3 + const_fact), 1])
roots = np.roots(coef) # note: returns a list of np.complex64.
# filter out the correct root.
# we're looking for a momentum value,
# so it must be a real value within (0, 1).
# a tiny imaginary value is acceptable.
land = np.logical_and
root_idx = land(land(np.real(roots) > 0, np.real(roots) < 1), np.abs(np.imag(roots)) < 1e-5)
valid_roots = roots[np.where(root_idx)]
assert len(valid_roots) > 0, 'failed to find a valid root'
# there may be two valid, duplicate roots. select one.
real_root = np.real(valid_roots[0])
#print('selected root:', real_root)
dr_sqrt = np.sqrt(self.h_max / self.h_min)
a, b = np.square(real_root), np.square((dr_sqrt - 1) / (dr_sqrt + 1))
mu = max(a, b)
if b > a:
print('note: taking dr calculation')
#print('new momentum:', mu)
return _f(mu)
def compute(self, dW, W):
# plain momentum (pseudo-code):
#return -alpha * dW + mu * (W - W_old)
V = super().compute(dW, W)
b = self.beta
m1b = 1 - self.beta
self.debias = 1 / (1 - self.beta_t)
#self.debias = _1
# NOTE TO SELF: any time the reference code says "avg" they imply "lpf".
grad_squared = dW * dW
grad_norm_squared = np.sum(grad_squared)
self.grad_norm_squared_lpf = b * self.grad_norm_squared_lpf + m1b * grad_norm_squared
grad_norm_squared_avg = self.grad_norm_squared_lpf * self.debias
# curvature_range()
self.curv_win[self.step % self.curv_win_width] = grad_norm_squared
# remember iterations (steps) start from 0.
valid_window = self.curv_win[:min(self.curv_win_width, self.step + 1)]
h_min_t = np.min(valid_window)
h_max_t = np.max(valid_window)
#print(h_min_t, h_max_t)
self.h_min_lpf = b * self.h_min_lpf + m1b * h_min_t
self.h_max_lpf = b * self.h_max_lpf + m1b * h_max_t
self.h_min = self.h_min_lpf * self.debias
self.h_max = self.h_max_lpf * self.debias
# FIXME? the first few iterations are huuuuuuuge for regression.
#print(self.h_min, self.h_max)
# grad_variance()
self.grad_avg_lpf = b * self.grad_avg_lpf + m1b * dW
self.grad_avg_squared_lpf = b * self.grad_avg_squared_lpf + m1b * grad_squared
self.grad_avg = self.grad_avg_lpf * self.debias
self.grad_avg_squared = self.grad_avg_squared_lpf * self.debias
# FIXME: reimplement, this is weird.
#self._grad_avg = [self._moving_averager.average(dW)]
#self._grad_avg_squared = [np.square(val) for val in self._grad_avg]
#self._grad_var = self._grad_norm_squared_avg - np.add_n( [np.reduce_sum(val) for val in self._grad_avg_squared] )
# || g^2_avg - g_avg^2 ||_1
#self.grad_var = grad_norm_squared_avg - np.sum(self.grad_avg_squared)
# note: the abs probably isn't necessary here.
self.grad_var = np.sum(np.abs(self.grad_avg_squared - np.square(self.grad_avg)))
#print(self.grad_var)
# dist_to_opt()
grad_norm = np.sqrt(grad_norm_squared)
self.grad_norm_avg_lpf = b * self.grad_norm_avg_lpf + m1b * grad_norm
grad_norm_avg = self.grad_norm_avg_lpf * self.debias
# single iteration distance estimation.
dist_to_opt = grad_norm_avg / grad_norm_squared_avg
# running average of distance
self.dist_to_opt_avg_lpf = b * self.dist_to_opt_avg_lpf + m1b * dist_to_opt
self.dist_to_opt_avg = self.dist_to_opt_avg_lpf * self.debias
# update_hyper_param()
if self.step > 0:
mu_for_real = self.get_mu()
lr_for_real = self.get_lr(mu_for_real)
self.mu_lpf = b * self.mu_lpf + m1b * mu_for_real
self.alpha_lpf = b * self.alpha_lpf + m1b * lr_for_real
self.mu = self.mu_lpf * self.debias
self.alpha = self.alpha_lpf * self.debias
###
self.step += 1
self.beta_t *= self.beta
return V
# Nonparametric Layers {{{1
class AlphaDropout(Layer):

View file

@ -43,7 +43,7 @@ else:
starts = 3
bs = 500
learner_class = SGDR
learner_class = None #SGDR
restart_decay = 0.5
n_dense = 2
@ -51,9 +51,9 @@ else:
new_dims = (4, 12)
activation = Relu
reg = L1L2(3.2e-5, 3.2e-4)
final_reg = L1L2(3.2e-5, 1e-3)
dropout = 0.05
reg = None # L1L2(3.2e-5, 3.2e-4)
final_reg = None # L1L2(3.2e-5, 1e-3)
dropout = None # 0.05
actreg_lamb = None #1e-4
load_fn = None
@ -132,7 +132,7 @@ model = Model(x, y, unsafe=True)
lr *= np.sqrt(bs)
optim = Adam()
optim = YellowFin()
if learner_class == SGDR:
learner = learner_class(optim, epochs=epochs//starts, rate=lr,
restarts=starts-1, restart_decay=restart_decay,