begin work on multiple input/output nodes
This commit is contained in:
parent
a7c4bdaa2e
commit
69786b40a1
2 changed files with 74 additions and 32 deletions
4
onn.py
4
onn.py
|
@ -893,11 +893,13 @@ def run(program, args=None):
|
|||
|
||||
# Model Information {{{2
|
||||
|
||||
print('digraph G {')
|
||||
for node in model.ordered_nodes:
|
||||
children = [str(n) for n in node.children]
|
||||
if children:
|
||||
sep = '->'
|
||||
print(str(node) + sep + ('\n' + str(node) + sep).join(children))
|
||||
print('\t' + str(node) + sep + (';\n\t' + str(node) + sep).join(children) + ';')
|
||||
print('}')
|
||||
log('parameters', model.param_count)
|
||||
|
||||
# Training {{{2
|
||||
|
|
102
onn_core.py
102
onn_core.py
|
@ -24,6 +24,52 @@ _pi = _f(np.pi)
|
|||
class LayerIncompatibility(Exception):
|
||||
pass
|
||||
|
||||
# Node Traversal {{{1
|
||||
|
||||
class DummyNode:
|
||||
name = "Dummy"
|
||||
|
||||
def __init__(self, children=None, parents=None):
|
||||
self.children = children if children is not None else []
|
||||
self.parents = parents if parents is not None else []
|
||||
|
||||
def traverse(node_in, node_out, nodes=None, dummy_mode=False):
|
||||
# i have no idea if this is any algorithm in particular.
|
||||
nodes = nodes if nodes is not None else []
|
||||
|
||||
seen_up = {}
|
||||
q = [node_out]
|
||||
while len(q) > 0:
|
||||
node = q.pop(0)
|
||||
seen_up[node] = True
|
||||
for parent in node.parents:
|
||||
q.append(parent)
|
||||
|
||||
if dummy_mode:
|
||||
seen_up[node_in] = True
|
||||
|
||||
nodes = []
|
||||
q = [node_in]
|
||||
while len(q) > 0:
|
||||
node = q.pop(0)
|
||||
if not seen_up[node]:
|
||||
continue
|
||||
parents_added = (parent in nodes for parent in node.parents)
|
||||
if not node in nodes and all(parents_added):
|
||||
nodes.append(node)
|
||||
for child in node.children:
|
||||
q.append(child)
|
||||
|
||||
if dummy_mode:
|
||||
nodes.remove(node_in)
|
||||
|
||||
return nodes
|
||||
|
||||
def traverse_all(nodes_in, nodes_out, nodes=None):
|
||||
all_in = DummyNode(children=nodes_in)
|
||||
all_out = DummyNode(parents=nodes_out)
|
||||
return traverse(all_in, all_out, nodes, dummy_mode=True)
|
||||
|
||||
# Initializations {{{1
|
||||
|
||||
# note: these are currently only implemented for 2D shapes.
|
||||
|
@ -716,23 +762,30 @@ class Dense(Layer):
|
|||
# Models {{{1
|
||||
|
||||
class Model:
|
||||
def __init__(self, x, y, unsafe=False):
|
||||
assert isinstance(x, Layer), x
|
||||
assert isinstance(y, Layer), y
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.ordered_nodes = self.traverse([], self.y)
|
||||
def __init__(self, nodes_in, nodes_out, unsafe=False):
|
||||
nodes_in = [nodes_in] if isinstance(nodes_in, Layer) else nodes_in
|
||||
nodes_out = [nodes_out] if isinstance(nodes_out, Layer) else nodes_out
|
||||
assert type(nodes_in) == list, type(nodes_in)
|
||||
assert type(nodes_out) == list, type(nodes_out)
|
||||
self.nodes_in = nodes_in
|
||||
self.nodes_out = nodes_out
|
||||
self.nodes = traverse_all(self.nodes_in, self.nodes_out)
|
||||
self.make_weights()
|
||||
for node in self.ordered_nodes:
|
||||
for node in self.nodes:
|
||||
node.unsafe = unsafe
|
||||
|
||||
@property
|
||||
def ordered_nodes(self):
|
||||
# deprecated? we don't guarantee an order like we did before.
|
||||
return self.nodes
|
||||
|
||||
def make_weights(self):
|
||||
self.param_count = sum((node.size for node in self.ordered_nodes))
|
||||
self.param_count = sum((node.size for node in self.nodes))
|
||||
self.W = np.zeros(self.param_count, dtype=_f)
|
||||
self.dW = np.zeros(self.param_count, dtype=_f)
|
||||
|
||||
offset = 0
|
||||
for node in self.ordered_nodes:
|
||||
for node in self.nodes:
|
||||
if node.size > 0:
|
||||
inner_offset = 0
|
||||
|
||||
|
@ -752,39 +805,26 @@ class Model:
|
|||
assert inner_offset >= node.size, "Layer {} allocated less weights than it said it would".format(node)
|
||||
offset += node.size
|
||||
|
||||
def traverse(self, nodes, node):
|
||||
if node == self.x:
|
||||
return [node]
|
||||
for parent in node.parents:
|
||||
if parent not in nodes:
|
||||
new_nodes = self.traverse(nodes, parent)
|
||||
for new_node in new_nodes:
|
||||
if new_node not in nodes:
|
||||
nodes.append(new_node)
|
||||
if nodes:
|
||||
nodes.append(node)
|
||||
return nodes
|
||||
|
||||
def forward(self, X, deterministic=False):
|
||||
values = dict()
|
||||
input_node = self.ordered_nodes[0]
|
||||
output_node = self.ordered_nodes[-1]
|
||||
input_node = self.nodes[0]
|
||||
output_node = self.nodes[-1]
|
||||
values[input_node] = input_node._propagate(np.expand_dims(X, 0), deterministic)
|
||||
for node in self.ordered_nodes[1:]:
|
||||
for node in self.nodes[1:]:
|
||||
values[node] = node.propagate(values, deterministic)
|
||||
return values[output_node]
|
||||
|
||||
def backward(self, error):
|
||||
values = dict()
|
||||
output_node = self.ordered_nodes[-1]
|
||||
output_node = self.nodes[-1]
|
||||
values[output_node] = output_node._backpropagate(np.expand_dims(error, 0))
|
||||
for node in reversed(self.ordered_nodes[:-1]):
|
||||
for node in reversed(self.nodes[:-1]):
|
||||
values[node] = node.backpropagate(values)
|
||||
return self.dW
|
||||
|
||||
def regulate_forward(self):
|
||||
loss = _0
|
||||
for node in self.ordered_nodes:
|
||||
for node in self.nodes:
|
||||
if node.loss is not None:
|
||||
loss += node.loss
|
||||
for k, w in node.weights.items():
|
||||
|
@ -792,7 +832,7 @@ class Model:
|
|||
return loss
|
||||
|
||||
def regulate(self):
|
||||
for node in self.ordered_nodes:
|
||||
for node in self.nodes:
|
||||
for k, w in node.weights.items():
|
||||
w.update()
|
||||
|
||||
|
@ -812,7 +852,7 @@ class Model:
|
|||
for k in weights.keys():
|
||||
used[k] = False
|
||||
|
||||
nodes = [node for node in self.ordered_nodes if node.size > 0]
|
||||
nodes = [node for node in self.nodes if node.size > 0]
|
||||
for node in nodes:
|
||||
full_name = str(node).lower()
|
||||
for s_name, o_name in node.serialized.items():
|
||||
|
@ -833,7 +873,7 @@ class Model:
|
|||
|
||||
counts = defaultdict(lambda: 0)
|
||||
|
||||
nodes = [node for node in self.ordered_nodes if node.size > 0]
|
||||
nodes = [node for node in self.nodes if node.size > 0]
|
||||
for node in nodes:
|
||||
full_name = str(node).lower()
|
||||
grp = f.create_group(full_name)
|
||||
|
|
Loading…
Reference in a new issue