add preliminary Sparse layer

This commit is contained in:
Connor Olding 2020-03-17 07:26:20 -07:00
parent 4a5084df48
commit 5cd4e8d1c1

View file

@ -265,3 +265,62 @@ class CosineDense(Dense):
dX = ddot @ self.coeffs.f.T + dX_norm / self.X_norm * self.X
return dX
class Sparse(Layer):
# (WIP)
# roughly implements a structured, sparsely-connected layer.
# paper: https://arxiv.org/abs/1812.01164
# TODO: (re)implement serialization.
def __init__(self, dim, con, init=init_he_uniform, reg=None):
super().__init__()
self.dim = int(dim)
self.con = int(con)
self.output_shape = (dim,)
self.coeffs = self._new_weights('coeffs', init=init, regularizer=reg)
self.indices = None
def make_shape(self, parent):
shape = parent.output_shape
self.input_shape = shape
assert len(shape) == 1, shape
self.coeffs.shape = (self.con, self.dim)
self.size_in = shape[0]
self.make_indices(self.size_in, self.con, self.dim)
def make_indices(self, size_in, connectivity, size_out):
basic = np.arange(size_in)
indices = []
inv_ind = []
count = 0
desired = size_out * connectivity
# TODO: replace with a for loop.
while count < desired:
np.random.shuffle(basic)
indices.append(basic.copy())
inverse = np.zeros_like(basic)
inverse[basic] = np.arange(len(basic)) + count
inv_ind.append(inverse)
count += len(basic)
self.indices = np.concatenate(indices)[:desired].copy()
self.inv_ind = np.concatenate(inv_ind)
def forward(self, X):
self.X = X
self.O = X[:,self.indices].reshape(len(X), self.con, self.dim)
return np.sum(self.O * self.coeffs.f, 1)
def backward(self, dY):
dY = np.expand_dims(dY, 1)
self.coeffs.g += np.sum(dY * self.O, 0)
dO = dY * self.coeffs.f
x = dO
batch_size = len(x)
x = x.reshape(batch_size, -1)
if x.shape[1] % self.size_in != 0:
x = np.pad(x, ((0, 0), (0, self.size_in - x.shape[1] % self.size_in)))
x = x[:, self.inv_ind].reshape(batch_size, -1, self.size_in)
return x.sum(1)