allow configuration of Neumann hyperparameters

This commit is contained in:
Connor Olding 2019-02-17 07:47:53 +01:00
parent c92082e07a
commit 2b5798332d

View file

@ -325,13 +325,15 @@ class Neumann(Optimizer):
# you can do this yourself if you really want to.
# it seems to be enough to use a slow-starting Learner like SineCLR.
def __init__(self, lr=0.01):
self.alpha = _f(1e-7) # cubic.
self.beta = _f(1e-5) # repulsive. NOTE: multiplied by len(dW) later.
self.gamma = _f(0.99) # EMA, or 1-pole low-pass parameter. same thing.
# momentum is ∝ (in the shape of) 1 - 1/(1 + t)
self.mu_min = _f(0.5)
self.mu_max = _f(0.9)
def __init__(self, lr=0.01, delta=1.0,
alpha=1e-7, beta=1e-5, gamma=0.99, mu_min=0.5, mu_max=0.9):
self.delta = _f(delta) # delta-time.
self.alpha = _f(alpha) # cubic.
self.beta = _f(beta) # repulsive. NOTE: multiplied by len(dW) later.
self.gamma = _f(gamma) # EMA, or 1-pole low-pass parameter. same thing.
# momentum is in the shape of 1 - 1/(1 + t)
self.mu_min = _f(mu_min)
self.mu_max = _f(mu_max)
self.reset_period = 0 # TODO
super().__init__(lr)
@ -348,8 +350,6 @@ class Neumann(Optimizer):
raise Exception("compute() is not available for this Optimizer.")
def update(self, dW, W):
self.t += 1
if self.mt is None:
self.mt = np.zeros_like(dW)
if self.vt is None:
@ -360,10 +360,12 @@ class Neumann(Optimizer):
return
# momentum quantity:
mu = _1 - _1/_f(self.t) # the + 1 is implicit.
mu = _1 - _1/_f(self.t + _1)
mu = (self.mu_max - self.mu_max) * mu + self.mu_min
# smoothed change in weights:
self.t += self.delta
# change in smoothed weights:
delta = W - self.vt
delta_norm_squared = np.square(delta).sum()
delta_norm = np.sqrt(delta_norm_squared)
@ -373,11 +375,12 @@ class Neumann(Optimizer):
repulsive_reg = self.beta * dW.size / delta_norm_squared
dt = dW + (cubic_reg - repulsive_reg) * (delta / delta_norm)
# plain momentum:
# Richardson iteration disguised as plain momentum:
self.mt = mu * self.mt - self.lr * dt
# this is only a good approximation for small ||self.lr * self.mt||.
# weights and accumulator:
W += mu * self.mt - self.lr * dt
# update weights and moving average:
W += mu * self.mt - self.lr * dt # essentially Nesterov momentum.
self.vt = W + self.gamma * (self.vt - W)