add generator-based training method
This commit is contained in:
parent
53a7d92288
commit
19a9583da9
1 changed files with 57 additions and 0 deletions
|
@ -708,6 +708,63 @@ class Ritual: # i'm just making up names at this point
|
||||||
self.bn = 0
|
self.bn = 0
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
||||||
|
def train_batched_gen(self, generator, batch_count,
|
||||||
|
return_losses=False, test_only=False):
|
||||||
|
assert isinstance(return_losses, bool) or return_losses == 'both'
|
||||||
|
|
||||||
|
if not test_only:
|
||||||
|
self.en += 1
|
||||||
|
|
||||||
|
cumsum_loss, cumsum_mloss = _0, _0
|
||||||
|
losses, mlosses = [], []
|
||||||
|
|
||||||
|
prev_batch_size = None
|
||||||
|
|
||||||
|
for b in range(batch_count):
|
||||||
|
if not test_only:
|
||||||
|
self.bn += 1
|
||||||
|
|
||||||
|
# TODO: pass a GeneratorData object containing en, bn, ritual/model fields.
|
||||||
|
# ...is there a pythonic way of doing that?
|
||||||
|
batch_inputs, batch_outputs = next(generator)
|
||||||
|
|
||||||
|
batch_size = batch_inputs.shape[0]
|
||||||
|
assert batch_size == prev_batch_size or prev_batch_size is None, \
|
||||||
|
"non-constant batch size (got {} expected {})".format(
|
||||||
|
batch_size, prev_batch_size) # TODO: lift this restriction
|
||||||
|
prev_batch_size = batch_size
|
||||||
|
|
||||||
|
if not test_only and self.learner.per_batch:
|
||||||
|
self.learner.batch(b / batch_count)
|
||||||
|
|
||||||
|
if test_only:
|
||||||
|
predicted = self.model.forward(batch_inputs)
|
||||||
|
else:
|
||||||
|
predicted = self.learn(batch_inputs, batch_outputs)
|
||||||
|
self.update()
|
||||||
|
|
||||||
|
if return_losses == 'both':
|
||||||
|
batch_loss = self.loss.forward(predicted, batch_outputs)
|
||||||
|
if np.isnan(batch_loss):
|
||||||
|
raise Exception("nan")
|
||||||
|
losses.append(batch_loss)
|
||||||
|
cumsum_loss += batch_loss
|
||||||
|
|
||||||
|
batch_mloss = self.measure(predicted, batch_outputs)
|
||||||
|
if np.isnan(batch_mloss):
|
||||||
|
raise Exception("nan")
|
||||||
|
if return_losses:
|
||||||
|
mlosses.append(batch_mloss)
|
||||||
|
cumsum_mloss += batch_mloss
|
||||||
|
|
||||||
|
avg_mloss = cumsum_mloss / _f(batch_count)
|
||||||
|
if return_losses == 'both':
|
||||||
|
avg_loss = cumsum_loss / _f(batch_count)
|
||||||
|
return avg_loss, avg_mloss, losses, mlosses
|
||||||
|
elif return_losses:
|
||||||
|
return avg_mloss, mlosses
|
||||||
|
return avg_mloss
|
||||||
|
|
||||||
def train_batched(self, inputs, outputs, batch_size,
|
def train_batched(self, inputs, outputs, batch_size,
|
||||||
return_losses=False, test_only=False):
|
return_losses=False, test_only=False):
|
||||||
assert isinstance(return_losses, bool) or return_losses == 'both'
|
assert isinstance(return_losses, bool) or return_losses == 'both'
|
||||||
|
|
Loading…
Reference in a new issue