This commit is contained in:
Connor Olding 2017-03-12 03:53:14 -07:00
parent 205d64a8a0
commit 0306b6f1e0
2 changed files with 37 additions and 16 deletions

View file

@ -239,7 +239,7 @@ class CosineDense(Dense):
# Rituals {{{1
def stochastic_multiply(W, gamma=0.5, allow_negation=True):
def stochastic_multiply(W, gamma=0.5, allow_negation=False):
# paper: https://arxiv.org/abs/1606.01981
assert W.ndim == 1, W.ndim
@ -248,7 +248,11 @@ def stochastic_multiply(W, gamma=0.5, allow_negation=True):
alpha = np.max(np.abs(W))
# NOTE: numpy gives [low, high) but the paper advocates [low, high]
mult = np.random.uniform(gamma, 1/gamma, size=size)
if allow_negation: # TODO: verify this is correct. seems to wreak havok.
if allow_negation:
# NOTE: i have yet to see this do anything but cause divergence.
# i've referenced the paper several times yet still don't understand
# what i'm doing wrong, so i'm disabling it by default in my code.
# maybe i just need *a lot* more weights to compensate.
prob = (W / alpha + 1) / 2
samples = np.random.random_sample(size=size)
mult *= np.where(samples < prob, 1, -1)
@ -275,8 +279,7 @@ class StochMRitual(Ritual):
self.W[:] = self.model.W
for layer in self.model.ordered_nodes:
if isinstance(layer, Dense):
stochastic_multiply(layer.coeffs.ravel(), gamma=self.gamma,
allow_negation=True)
stochastic_multiply(layer.coeffs.ravel(), gamma=self.gamma)
residual = super().learn(inputs, outputs)
self.model.W[:] = self.W
return residual
@ -299,23 +302,25 @@ class NoisyRitual(Ritual):
def learn(self, inputs, outputs):
# this is pretty crude
s = self.input_noise
noisy_inputs = inputs + np.random.normal(0, s, size=inputs.shape)
s = self.output_noise
noisy_outputs = outputs + np.random.normal(0, s, size=outputs.shape)
return super().learn(noisy_inputs, noisy_outputs)
if self.input_noise > 0:
s = self.input_noise
inputs = inputs + np.random.normal(0, s, size=inputs.shape)
if self.output_noise > 0:
s = self.output_noise
outputs = outputs + np.random.normal(0, s, size=outputs.shape)
return super().learn(inputs, outputs)
def update(self):
# gradient noise paper: https://arxiv.org/abs/1511.06807
if self.gradient_noise > 0:
size = len(self.model.dW)
gamma = 0.55
s = self.gradient_noise / (1 + self.bn) ** gamma
#s = self.gradient_noise / (1 + self.bn) ** gamma
# experiments:
#s = np.sqrt(self.learner.rate)
s = self.gradient_noise * np.sqrt(self.learner.rate)
#s = np.square(self.learner.rate)
#s = self.learner.rate / self.en
self.model.dW += np.random.normal(0, s, size=size)
self.model.dW += np.random.normal(0, max(s, 1e-8), size=size)
super().update()
# Learners {{{1
@ -607,8 +612,6 @@ def ritual_from_config(config, learner, loss, mloss):
return ritual
def model_from_config(config, input_features, output_features, callbacks):
# Our Test Model
init = inits[config.init]
activation = activations[config.activation]
@ -725,6 +728,8 @@ def run(program, args=None):
input_features = inputs.shape[-1]
output_features = outputs.shape[-1]
# Our Test Model
callbacks = Dummy()
model, learner, ritual = \

View file

@ -78,6 +78,20 @@ class Accuracy(Loss):
def backward(self, p, y):
raise NotImplementedError("cannot take the gradient of Accuracy")
class Confidence(Loss):
def forward(self, p, y):
categories = y.shape[-1]
#confidence = (p - 1/categories) / (1 - categories)
#confidence = 1 - np.min(p, axis=-1) * categories
confidence = (np.max(p, axis=-1) - 1/categories) / (1 - 1/categories)
# there's also an upper bound on confidence
# due to the exponent in softmax,
# but we don't compensate for that. keep it simple.
return np.mean(confidence)
def backward(self, p, y):
raise NotImplementedError("this is probably a bad idea")
class ResidualLoss(Loss):
def forward(self, p, y):
return np.mean(self.f(p - y))
@ -725,8 +739,10 @@ class Ritual: # i'm just making up names at this point
if not test_only and self.learner.per_batch:
self.learner.batch(b / batch_count)
predicted = self.learn(batch_inputs, batch_outputs)
if not test_only:
if test_only:
predicted = self.model.forward(batch_inputs)
else:
predicted = self.learn(batch_inputs, batch_outputs)
self.update()
if return_losses == 'both':