2017-02-27 14:52:39 -08:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
from optim_nn import *
|
2017-02-27 16:36:04 -08:00
|
|
|
from optim_nn_core import _f
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
#np.random.seed(42069)
|
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
use_emnist = False
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
measure_every_epoch = True
|
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
if use_emnist:
|
|
|
|
lr = 0.01
|
|
|
|
epochs = 48
|
|
|
|
starts = 2
|
|
|
|
bs = 200
|
|
|
|
|
|
|
|
sgdr = True
|
|
|
|
restart_decay = 0.5
|
|
|
|
|
|
|
|
n_dense = 0
|
|
|
|
n_denses = 2
|
|
|
|
new_dims = (28, 28)
|
|
|
|
activation = GeluApprox
|
|
|
|
|
|
|
|
log_fn = 'emnist_losses.npz'
|
|
|
|
fn = 'emnist-balanced.npz'
|
|
|
|
mnist_dim = 28
|
|
|
|
mnist_classes = 47
|
|
|
|
|
|
|
|
else:
|
|
|
|
lr = 0.0032
|
|
|
|
epochs = 125
|
|
|
|
starts = 5
|
|
|
|
bs = 200
|
|
|
|
|
|
|
|
activation = Relu
|
|
|
|
|
|
|
|
sgdr = False
|
|
|
|
restart_decay = 0.5
|
|
|
|
|
|
|
|
n_dense = 1
|
|
|
|
n_denses = 1
|
|
|
|
new_dims = (4, 12)
|
|
|
|
|
|
|
|
log_fn = 'mnist_losses.npz'
|
|
|
|
fn = 'mnist.npz'
|
|
|
|
mnist_dim = 28
|
|
|
|
mnist_classes = 10
|
|
|
|
|
2017-02-27 14:52:39 -08:00
|
|
|
def get_mnist(fn='mnist.npz'):
|
|
|
|
import os.path
|
2017-03-12 17:41:18 -07:00
|
|
|
if fn == 'mnist.npz' and not os.path.exists(fn):
|
2017-02-27 14:52:39 -08:00
|
|
|
from keras.datasets import mnist
|
|
|
|
from keras.utils.np_utils import to_categorical
|
|
|
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
|
|
|
X_train = X_train.reshape(X_train.shape[0], 1, mnist_dim, mnist_dim)
|
|
|
|
X_test = X_test.reshape(X_test.shape[0], 1, mnist_dim, mnist_dim)
|
|
|
|
X_train = X_train.astype('float32') / 255
|
|
|
|
X_test = X_test.astype('float32') / 255
|
|
|
|
Y_train = to_categorical(y_train, mnist_classes)
|
|
|
|
Y_test = to_categorical(y_test, mnist_classes)
|
|
|
|
np.savez_compressed(fn,
|
|
|
|
X_train=X_train,
|
|
|
|
Y_train=Y_train,
|
|
|
|
X_test=X_test,
|
|
|
|
Y_test=Y_test)
|
|
|
|
lament("mnist successfully saved to", fn)
|
|
|
|
lament("please re-run this program to continue")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
with np.load(fn) as f:
|
|
|
|
return f['X_train'], f['Y_train'], f['X_test'], f['Y_test']
|
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
inputs, outputs, valid_inputs, valid_outputs = get_mnist(fn)
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
x = Input(shape=inputs.shape[1:])
|
|
|
|
y = x
|
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
y = y.feed(Reshape(new_shape=(mnist_dim, mnist_dim)))
|
|
|
|
for i in range(n_denses):
|
|
|
|
if i > 0:
|
|
|
|
y = y.feed(activation())
|
|
|
|
y = y.feed(Denses(new_dims[0], axis=0, init=init_he_normal))
|
|
|
|
y = y.feed(Denses(new_dims[1], axis=1, init=init_he_normal))
|
2017-02-27 14:52:39 -08:00
|
|
|
y = y.feed(Flatten())
|
2017-03-12 17:41:18 -07:00
|
|
|
for i in range(n_dense):
|
|
|
|
if i > 0:
|
|
|
|
y = y.feed(activation())
|
|
|
|
y = y.feed(Dense(y.output_shape[0], init=init_he_normal))
|
|
|
|
y = y.feed(activation())
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
y = y.feed(Dense(mnist_classes, init=init_glorot_uniform))
|
|
|
|
y = y.feed(Softmax())
|
|
|
|
|
|
|
|
model = Model(x, y, unsafe=True)
|
|
|
|
|
|
|
|
optim = Adam()
|
2017-03-12 17:41:18 -07:00
|
|
|
if sgdr:
|
2017-02-28 17:12:56 -08:00
|
|
|
learner = SGDR(optim, epochs=epochs//starts, rate=lr,
|
|
|
|
restarts=starts-1, restart_decay=restart_decay,
|
|
|
|
expando=lambda i:0)
|
|
|
|
else:
|
|
|
|
# learner = TriangularCLR(optim, epochs=epochs, lower_rate=0, upper_rate=lr,
|
|
|
|
# frequency=epochs//starts)
|
|
|
|
learner = SineCLR(optim, epochs=epochs, lower_rate=0, upper_rate=lr,
|
|
|
|
frequency=epochs//starts)
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
loss = CategoricalCrossentropy()
|
|
|
|
mloss = Accuracy()
|
|
|
|
|
|
|
|
ritual = Ritual(learner=learner, loss=loss, mloss=mloss)
|
2017-03-12 17:41:18 -07:00
|
|
|
#ritual = NoisyRitual(learner=learner, loss=loss, mloss=mloss,
|
|
|
|
# input_noise=1e-1, output_noise=3.2e-2, gradient_noise=1e-1)
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
log('parameters', model.param_count)
|
|
|
|
|
|
|
|
ritual.prepare(model)
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
batch_losses, batch_mlosses = [], []
|
|
|
|
train_losses, train_mlosses = [], []
|
|
|
|
valid_losses, valid_mlosses = [], []
|
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
train_confid, valid_confid = [], []
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
def measure_error(quiet=False):
|
2017-02-27 14:52:39 -08:00
|
|
|
def print_error(name, inputs, outputs, comparison=None):
|
|
|
|
loss, mloss, _, _ = ritual.test_batched(inputs, outputs, bs, return_losses='both')
|
2017-03-12 17:41:18 -07:00
|
|
|
|
|
|
|
c = Confidence()
|
|
|
|
predicted = ritual.model.forward(inputs)
|
|
|
|
confid = c.forward(predicted)
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
if not quiet:
|
|
|
|
log(name + " loss", "{:12.6e}".format(loss))
|
|
|
|
log(name + " accuracy", "{:6.2f}%".format(mloss * 100))
|
2017-03-12 17:41:18 -07:00
|
|
|
log(name + " confidence", "{:6.2f}%".format(confid * 100))
|
|
|
|
|
|
|
|
return loss, mloss, confid
|
2017-02-27 14:52:39 -08:00
|
|
|
|
2017-03-12 17:41:18 -07:00
|
|
|
#if not quiet:
|
|
|
|
loss, mloss, confid = print_error("train", inputs, outputs)
|
|
|
|
train_losses.append(loss)
|
|
|
|
train_mlosses.append(mloss)
|
|
|
|
train_confid.append(confid)
|
|
|
|
loss, mloss, confid = print_error("valid", valid_inputs, valid_outputs)
|
2017-02-27 16:36:04 -08:00
|
|
|
valid_losses.append(loss)
|
|
|
|
valid_mlosses.append(mloss)
|
2017-03-12 17:41:18 -07:00
|
|
|
valid_confid.append(confid)
|
2017-02-27 14:52:39 -08:00
|
|
|
|
|
|
|
measure_error()
|
|
|
|
|
|
|
|
while learner.next():
|
|
|
|
indices = np.arange(inputs.shape[0])
|
|
|
|
np.random.shuffle(indices)
|
|
|
|
shuffled_inputs = inputs[indices]
|
|
|
|
shuffled_outputs = outputs[indices]
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
avg_loss, avg_mloss, losses, mlosses = ritual.train_batched(
|
2017-02-27 14:52:39 -08:00
|
|
|
shuffled_inputs, shuffled_outputs,
|
|
|
|
batch_size=bs,
|
|
|
|
return_losses='both')
|
|
|
|
fmt = "rate {:10.8f}, loss {:12.6e}, accuracy {:6.2f}%"
|
2017-03-22 14:41:24 -07:00
|
|
|
log("epoch {}".format(learner.epoch),
|
2017-02-27 14:52:39 -08:00
|
|
|
fmt.format(learner.rate, avg_loss, avg_mloss * 100))
|
|
|
|
|
2017-02-27 16:36:04 -08:00
|
|
|
batch_losses += losses
|
|
|
|
batch_mlosses += mlosses
|
|
|
|
|
|
|
|
if measure_every_epoch:
|
2017-03-22 14:41:24 -07:00
|
|
|
quiet = learner.epoch != learner.epochs
|
2017-02-27 16:36:04 -08:00
|
|
|
measure_error(quiet=quiet)
|
|
|
|
|
|
|
|
if not measure_every_epoch:
|
|
|
|
measure_error()
|
|
|
|
|
|
|
|
if log_fn:
|
|
|
|
log('saving losses', log_fn)
|
|
|
|
np.savez_compressed(log_fn,
|
|
|
|
batch_losses =np.array(batch_losses, dtype=_f),
|
|
|
|
batch_mlosses=np.array(batch_mlosses, dtype=_f),
|
|
|
|
train_losses =np.array(train_losses, dtype=_f),
|
|
|
|
train_mlosses=np.array(train_mlosses, dtype=_f),
|
|
|
|
valid_losses =np.array(valid_losses, dtype=_f),
|
2017-03-12 17:41:18 -07:00
|
|
|
valid_mlosses=np.array(valid_mlosses, dtype=_f),
|
|
|
|
train_confid =np.array(train_confid, dtype=_f),
|
|
|
|
valid_confid =np.array(valid_confid, dtype=_f))
|