optim/README.md

91 lines
3 KiB
Markdown
Raw Normal View History

2017-04-11 22:23:07 -07:00
# neural network stuff
2017-03-14 03:10:47 -07:00
not unlike [my dsp repo,](https://github.com/notwa/dsp)
2017-04-11 22:23:07 -07:00
this is a bunch of half-baked python code that's kinda handy.
2017-03-14 03:10:47 -07:00
i give no guarantee anything provided here is correct.
don't expect commits, docs, or comments to be any verbose.
### heads up
this was formerly a gist.
**i might rewrite the git history**
at some point to add meaningful commit messages.
## other stuff
if you're coming here from Google: sorry, keep searching.
i know Google sometimes likes to give random repositories a high search ranking.
maybe consider one of the following:
* [keras](https://github.com/fchollet/keras)
for easy tensor-optimized networks.
strong [tensorflow](http://tensorflow.org) integration as of version 2.0.
also check out the
[keras-contrib](https://github.com/farizrahman4u/keras-contrib)
library for more components based on recent papers.
* [theano's source code](https://github.com/Theano/theano/blob/master/theano/tensor/nnet/nnet.py)
contains pure numpy test methods to reference against.
* [minpy](https://github.com/dmlc/minpy)
for tensor-powered numpy routines and automatic differentiation.
* [autograd](https://github.com/HIPS/autograd)
for automatic differentiation without tensors.
## dependencies
python 3.5+
numpy scipy h5py sklearn dotmap
2017-06-17 18:58:40 -07:00
## minimal example
```python
#!/usr/bin/env python3
2017-06-25 18:49:46 -07:00
from onn_core import *
2017-06-17 18:58:40 -07:00
bs = 500
lr = 0.0005 * np.sqrt(bs)
reg = L1L2(3.2e-5, 3.2e-4)
final_reg = L1L2(3.2e-5, 1e-3)
def get_mnist(fn='mnist.npz'):
with np.load(fn) as f:
return f['X_train'], f['Y_train'], f['X_test'], f['Y_test']
inputs, outputs, valid_inputs, valid_outputs = get_mnist()
x = Input(shape=inputs.shape[1:])
y = x
y = y.feed(Flatten())
y = y.feed(Dense(y.output_shape[0], init=init_he_normal, reg_w=reg, reg_b=reg))
y = y.feed(Relu())
y = y.feed(Dense(y.output_shape[0], init=init_he_normal, reg_w=reg, reg_b=reg))
y = y.feed(Dropout(0.05))
y = y.feed(Relu())
y = y.feed(Dense(10, init=init_glorot_uniform, reg_w=final_reg, reg_b=final_reg))
y = y.feed(Softmax())
model = Model(x, y, unsafe=True)
optim = Adam()
learner = SGDR(optim, epochs=20, rate=lr, restarts=2)
ritual = Ritual(learner=learner, loss=CategoricalCrossentropy(), mloss=Accuracy())
ritual.prepare(model)
while learner.next():
print("epoch", learner.epoch)
mloss, _ = ritual.train_batched(inputs, outputs, batch_size=bs, return_losses=True)
print("train accuracy", "{:6.2f}%".format(mloss * 100))
def print_error(name, inputs, outputs):
loss, mloss, _, _ = ritual.test_batched(inputs, outputs, bs, return_losses='both')
predicted = ritual.model.forward(inputs, deterministic=True)
print(name + " loss", "{:12.6e}".format(loss))
print(name + " accuracy", "{:6.2f}%".format(mloss * 100))
print_error("train", inputs, outputs)
print_error("valid", valid_inputs, valid_outputs)
```
2017-03-14 03:10:47 -07:00
## contributing
i'm just throwing this code out there,
so i don't actually expect anyone to contribute,
*but* if you do find a blatant issue,
maybe [yell at me on twitter.](https://twitter.com/antiformant)