From 98f669262cf130de8591b618802bf59cee6e3dc2 Mon Sep 17 00:00:00 2001 From: Connor Olding Date: Wed, 1 Jun 2016 09:23:25 -0700 Subject: [PATCH] . --- .dummy | 1 - filter_example.py | 239 ++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 239 insertions(+), 1 deletion(-) delete mode 100644 .dummy create mode 100644 filter_example.py diff --git a/.dummy b/.dummy deleted file mode 100644 index 945c9b4..0000000 --- a/.dummy +++ /dev/null @@ -1 +0,0 @@ -. \ No newline at end of file diff --git a/filter_example.py b/filter_example.py new file mode 100644 index 0000000..4498d56 --- /dev/null +++ b/filter_example.py @@ -0,0 +1,239 @@ +import numpy as np +import matplotlib.pyplot as plt +import scipy.signal as sig + +# optionally, use an alternate style for plotting. +# this reconfigures colors, fonts, padding, etc. +# i personally prefer the look of ggplot, but the contrast is generally worse. +plt.style.use('ggplot') + +# create log-spaced points from 20 to 20480 Hz. +# we'll compute our y values using these later. +# increasing precision will result in a smoother plot. +precision = 4096 +xs = np.arange(0, precision) / precision +xs = 20 * 1024**xs + +# decide on a sample-rate and a center-frequency (the -3dB point). +fs = 44100 +fc = 1000 + + +def response_setup(ax, ymin=-24, ymax=24, major_ticks_every=6, minor_ticks_split=2): + """configure axes for magnitude plotting within the range of human hearing.""" + ax.set_xlim(20, 20000) + ax.set_ylim(ymin, ymax) + ax.grid(True, 'both') # enable major and minor gridlines on both axes + ax.set_xlabel('frequency (Hz)') + ax.set_ylabel('magnitude (dB)') + # manually set y tick positions. + # this is usually better than relying on matplotlib to choose good values. + from matplotlib import ticker + ax.set_yticks(tuple(range(ymin, ymax + 1, major_ticks_every))) + minor_ticker = ticker.AutoMinorLocator(minor_ticks_split) + ax.yaxis.set_minor_locator(minor_ticker) + + +def modified_bilinear(b, a, w0): + """ + the modified bilinear transform defers specifying the center frequency + of an analog filter to the conversion to a digital filter: + this s-plane to z-plane transformation. + it also compensates for the frequency-warping effect. + + b and a are the normalized numerator and denominator coefficients (respectively) + of the polynomial in the s-plane, and w0 is the angular center frequency. + effectively, w0 = 2 * pi * fc / fs. + + the modified bilinear transform is specified by RBJ [1] as: + s := (1 - z^-1) / (1 + z^-1) / tan(w0 / 2) + as opposed to the traditional bilinear transform: + s := (1 - z^-1) / (1 + z^-1) + + [1]: http://musicdsp.org/files/Audio-EQ-Cookbook.txt + """ + + # in my opinion, this is a more convenient way of creating digital filters. + # scipy doesn't implement the modified bilinear transform, + # so i'll just write the expanded form for second-order filters here. + # TODO: include the equation that expanded/simplified to this + + # use padding to allow for first-order filters. + # untested + if len(b) == 2: + b = (b[0], b[1], 0) + if len(a) == 2: + a = (a[0], a[1], 0) + + assert len(b) == 3 and len(a) == 3, "unsupported order of filter" + + cw = np.cos(w0) + sw = np.sin(w0) + zb = np.array(( + b[0]*(1 - cw) + b[2]*(1 + cw) - b[1]*sw, + 2*(b[0]*(1 - cw) - b[2]*(1 + cw)), + b[0]*(1 - cw) + b[2]*(1 + cw) + b[1]*sw, + )) + za = np.array(( + a[0]*(1 - cw) + a[2]*(1 + cw) - a[1]*sw, + 2*(a[0]*(1 - cw) - a[2]*(1 + cw)), + a[0]*(1 - cw) + a[2]*(1 + cw) + a[1]*sw, + )) + return zb, za + + +def digital_magnitude(xs, cascade, fc, fs, decibels=True): + """ + compute the digital magnitude response + of an analog SOS filter (cascade) + at the points given at xs + and the center frequency fc + for the sampling rate of fs. + """ + + to_magnitude_decibels = lambda x: np.real(np.log10(np.abs(x)**2) * 10) + + # compute angular frequencies + ws = 2 * np.pi * xs / fs + w0 = 2 * np.pi * fc / fs + + digital_cascade = [modified_bilinear(*ba, w0=w0) for ba in cascade] + + # we don't need the first result freqz returns + # because it'll just be the worN we're passing. + responses = [sig.freqz(*ba, worN=ws)[1] for ba in digital_cascade] + + if decibels: + mags = [to_magnitude_decibels(response) for response in responses] + mags = np.array(mags) + composite = np.sum(mags, axis=0) + else: + # untested + mags = [np.abs(response) for response in responses] + mags = np.array(mags) + composite = np.prod(mags, axis=0) + + # we could also compute phase using (untested): + # -np.arctan2(np.imag(response), np.real(response)) + + return composite, mags + + +# compute the butterworth coefficients for later. +# we'll request them in SOS format: second-order sections. +# that means we'll get an array of second-order filters +# that combine to produce one higher-order filter. +# note that we specify 1 as the frequency; we'll give the actual frequency +# later, when we transform it to a digital filter. +butterworth_2 = sig.butter(N=2, Wn=1, analog=True, output='sos') +butterworth_6 = sig.butter(N=6, Wn=1, analog=True, output='sos') +# scipy returns the b and a coefficients in a flat array, +# but we need them separate. +butterworth_2 = butterworth_2.reshape(-1, 2, 3) +butterworth_6 = butterworth_6.reshape(-1, 2, 3) +butterworth_2_times3 = butterworth_2.repeat(3, axis=0) + + +# set up our first plot. +fig, ax = plt.subplots() +response_setup(ax, -30, 3) +ax.set_title("comparison of digital butterworth filters (fc=1kHz, fs=44.1kHz)") + +# compute the magnitude of the filters at our x positions. +# we don't want the individual magnitudes here, +# so assign them to the dummy variable _. +ys1, _ = digital_magnitude(xs, butterworth_2, fc, fs) +ys2, _ = digital_magnitude(xs, butterworth_2_times3, fc, fs) +ys3, _ = digital_magnitude(xs, butterworth_6, fc, fs) + +# our x axis is frequency, so it should be spaced logarithmically. +# our y axis is decibels, which is already a logarithmic unit. +# thus, semilogx is the plotting function to use here. +ax.semilogx(xs, ys1, label="second order") +ax.semilogx(xs, ys2, label="second order, three times") +ax.semilogx(xs, ys3, label="sixth order") + +ax.legend() # display the legend, given by labels when plotting. +fig.show() +fig.savefig('butterworth_comparison.png') + + +# set up our second plot. +fig, ax = plt.subplots() +response_setup(ax, -12, 12) +ax.set_title("digital butterworth decomposition (fc=1kHz, fs=44.1kHz)") + +cascade = butterworth_6 +composite, mags = digital_magnitude(xs, cascade, fc, fs) +for i, mag in enumerate(mags): + # Q has an inverse relation to the 1st-degree coefficient + # of the analog filter's denominator, so we can compute it that way. + Q = 1 / cascade[i][1][1] + ax.semilogx(xs, mag, label="second order (Q = {:.6f})".format(Q)) +ax.semilogx(xs, composite, label="composite") + +ax.legend() +fig.show() +fig.savefig('butterworth_composite.png') + + +# as a bonus, here's how the modified bilinear transform is especially useful: +# we can specify all the basic second-order analog filter types +# with minimal code! + +lowpass2 = lambda A, Q: ((1, 0, 0), + (1, 1/Q, 1)) +highpass2 = lambda A, Q: ((0, 0, 1), + (1, 1/Q, 1)) + +allpass2 = lambda A, Q: ((1, 1/Q, 1), + (1, 1/Q, 1)) + +# peaking filters are also (perhaps for the better) known as bell filters. +peaking2 = lambda A, Q: ((1, A/Q, 1), + (1, 1/A/Q, 1)) +# TODO: add classical "analog" peaking filter, where bandwidth and amplitude are interlinked + +# there are two common bandpass variants: +# one where the bandwidth and amplitude are interlinked, +bandpass2a = lambda A, Q: ((0, -A/Q, 0), + (1, 1/A/Q, 1)) +# and one where they aren't. +bandpass2b = lambda A, Q: ((0,-A*A/Q, 0), + (1, 1/Q, 1)) + +notch2 = lambda A, Q: ((1, 0, 1), + (1, 1/Q, 1)) + +lowshelf2 = lambda A, Q: (( A, np.sqrt(A)/Q, 1), + (1/A, 1/np.sqrt(A)/Q, 1)) + +highshelf2 = lambda A, Q: ((1, np.sqrt(A)/Q, A), + (1, 1/np.sqrt(A)/Q, 1/A)) + + +# here's an example of how to plot these. +# we specify the gain in decibels and bandwidth in octaves, +# then convert these to A and Q. +fig, ax = plt.subplots() +response_setup(ax, -30, 30) + +invsqrt2 = 1 / np.sqrt(2) # for bandwidth <-> Q calculation +# note that A is squared, so the decibel math here is a little different. +designer = lambda f, decibels, bandwidth: f(10**(decibels / 40.), invsqrt2 / bandwidth) + +ax.set_title("example of interlinked bandpass amplitude/bandwidth") +cascade = [ + designer(bandpass2a, 0, 2), + designer(bandpass2a, -18, 2), + designer(bandpass2a, 18, 2), +] + +composite, mags = digital_magnitude(xs, cascade, fc, fs) +for mag in mags: + ax.semilogx(xs, mag) +#ax.semilogx(xs, composite) + +#ax.legend() +fig.show() +fig.savefig('filter_example.png')