This commit is contained in:
Connor Olding 2016-05-24 20:15:26 -07:00
parent db3171ac29
commit 28edd29072
4 changed files with 445 additions and 1 deletions

1
.dummy
View file

@ -1 +0,0 @@
.

231
atttt.py Executable file
View file

@ -0,0 +1,231 @@
#!/usr/bin/env python3
import sys
import numpy as np
from misc import *
from basic import Brain
def uniq_rows(a, return_index=False, return_inverse=False, return_counts=False):
# black magic wrapper around np.unique
# via np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return_any = return_index or return_inverse or return_counts
if not return_any:
np.unique(a.view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))).view(a.dtype).reshape(-1, a.shape[1])
else:
void_dtype = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
ret = np.unique(a.view(void_dtype), return_index, return_inverse, return_counts)
return (ret[0].view(a.dtype).reshape(-1, a.shape[1]),) + ret[1:]
class ATTTT():
def __init__(self, brain):
self.brain = brain
self.score = self._score
def _score(self, reply, maxn):
if len(reply) > maxn:
return -999999999
#return len(reply)
return 1
def reply(self, item=None, maxn=1000, raw=False, attempts=None):
if attempts == None:
attempts = int(2**12 / self.brain.order)
lament('attempts:', attempts)
replies = []
for i in range(attempts):
reply = "".join(self.brain.reply(item=item, maxn=maxn+1))
replies += [(reply, self.score(reply, maxn))]
result = sorted(replies, key=lambda t: t[1], reverse=True)[0]
if raw:
return result
else:
return result[0]
class PatternBrain(Brain):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokens = []
def helper(self, v):
return (v,)
def learn_all(self, items, merges=1):
min_count = 2
if merges < 0:
min_count = -merges
merges = 65536
# use numpy so this isn't nearly as disgustingly slow
int32_min = -2**(np.dtype(np.int32).itemsize * 8 - 1)
empty = int32_min
neg_lookup = {-1: ''} # default with padding
alignment = 2
align = lambda x: (x + alignment // 2) // alignment * alignment
new_items = []
for item in items:
item = item.strip('\n')
# assert at least 1 padding character at the end
next_biggest = align(len(item) + 1)
# fill with padding (-1)
new_item = -np.ones(next_biggest, dtype=np.int32)
for i, c in enumerate(item):
new_item[i] = ord(c)
new_items.append(new_item)
# add an extra padding item to the head and tail
# for easier conversion from sequence back to all_items later on
pad = -np.ones(1, dtype=np.int32)
new_items.insert(0, pad)
new_items.append(pad)
all_items = np.concatenate(new_items)
if merges > 0:
# set up a 2d array to step through at half the row length,
# this means double redundancy, to acquire all the sequences.
# we don't have to .roll it later to get the other half,
# though that would require less memory.
sequences = all_items.repeat(2)[1:-1].reshape(-1, 2).copy()
for i in range(merges):
# learn
most_common = (None, 1)
# TODO: eventually check for empty here too
invalid = np.any(sequences == -1, axis=1)
valid_sequences = np.delete(sequences, np.where(invalid), axis=0)
unique, counts = uniq_rows(valid_sequences, return_counts=True)
count = counts.max()
if count > most_common[1]:
seq = unique[counts == count][0]
most_common = (seq, count)
if most_common[0] is None or most_common[1] <= 1 or most_common[1] < min_count:
lament('no more valid sequences')
break
new_id = -1 - len(neg_lookup)
neg_lookup[new_id] = "".join([o < 0 and neg_lookup[o] or chr(o) for o in most_common[0]])
if len("".join(neg_lookup.values())) > len(all_items):
lament('preventing dict from growing larger than source')
break
# replace our most common sequence in the sequences
found = np.all(sequences == most_common[0], axis=1)
before = np.roll(found, -1)
after = np.roll(found, 1)
# don't wrap around truth values
before[-1] = False
after[0] = False
# or remove padding
#before[0] = False
#after[-1] = False
# remove the "found" sequences
befores = sequences[before].T.copy()
befores[1] = new_id
sequences[before] = befores.T
afters = sequences[after].T.copy()
afters[0] = new_id
sequences[after] = afters.T
#sequences[found] = [empty, empty]
here = np.where(found)
sequences = np.delete(sequences, here, axis=0)
print("({:8}) new token: {:5} \"{}\"".format(len(here[0]), new_id, neg_lookup[new_id]))
if merges > 0:
# reconstruct all_items out of the sequences
all_items = sequences.reshape(-1)[::2][1:].copy()
self.padding = '~'
self.reset()
np_item = []
for i in all_items:
#for np_item in np.split(all_items, np.where(all_items == -1)):
if i == -1:
if len(np_item) == 0:
continue
item = tuple()
for i in np_item:
if i < 0:
assert(i != -1)
item += self.helper(neg_lookup[i])
else:
item += self.helper(chr(i))
#die(np_item, item)
self.learn(item)
np_item = []
elif i != empty:
np_item.append(i)
self.update()
def run(pname, args, env):
if not 1 <= len(args) <= 2:
lament("usage: {} {{input file}} [state_fn file]".format(sys.argv[0]))
sys.exit(1)
args = dict(enumerate(args)) # for .get()
fn = args[0]
state_fn = args.get(1, None)
count = int(env.get('COUNT', '8'))
order = int(env.get('ORDER', '3'))
temperature = float(env.get('TEMPERATURE', '0'))
maxn = int(env.get('MAXN', '1000'))
attempts = int(env.get('ATTEMPTS', '-1'))
merges = int(env.get('MERGES', '0'))
if attempts <= 0:
attempts = None
brain = PatternBrain(order=order, temperature=temperature)
tool = ATTTT(brain)
lament('# loading')
if state_fn:
try:
brain.load(state_fn, raw=False)
except FileNotFoundError:
pass
if brain and brain.new:
lament('# learning')
lines = open(fn).readlines()
brain.learn_all(lines, merges)
if brain and brain.new and state_fn:
brain.save(state_fn, raw=False)
lament('# replying')
for i in range(count):
#reply = tool.reply(maxn=maxn, raw=True, attempts=attempts)
#print('{:6.1f}\t{}'.format(reply[1], reply[0]))
print(tool.reply(maxn=maxn, attempts=attempts))
if __name__ == '__main__':
import sys
import os
pname = len(sys.argv) > 0 and sys.argv[0] or ''
args = len(sys.argv) > 1 and sys.argv[1:] or []
sys.exit(run(pname, args, os.environ))

196
basic.py Executable file
View file

@ -0,0 +1,196 @@
import math
import numpy as np
from misc import *
def normalize(counter):
v = counter.values()
s = float(sum(v))
m = float(max(v))
del v
d = {}
for c, cnt in counter.items():
d[c] = (cnt/s, cnt/m)
return d
# return [(c, cnt/s, cnt/m) for c, cnt in counter.items()]
def normalize_sorted(counter):
# mostly just for debugging i guess?
return sorted(normalize(counter), key=lambda t: t[1], reverse=True)
# http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139
class Brain:
# TODO: don't default padding here, but make sure it's set before running
# the reason is it's the only place that's specific to a string anymore
def __init__(self, order=1, temperature=0.5, padding="~"):
self.order = order
self.padding = padding
self.temperature = temperature
self.reset()
def reset(self):
import collections as cool
# unnormalized
self._machine = cool.defaultdict(cool.Counter)
# normalized
self.machine = None
self.type = None
self.dirty = False
self.new = True
@property
def temperature(self):
return self._temperature
@temperature.setter
def temperature(self, value):
self._temperature = value
if value == 1:
# TODO: proper distribution stuff
self.random = lambda count: np.random.random(count)**2
elif value == 0:
self.random = np.random.random
else:
# +0.25 = -0.0
# +0.50 = +0.5
# +0.75 = +1.0
point75 = 1
const = (point75 * 2 - 1) / math.atanh(0.75 * 2 - 1)
unbound = (math.atanh((1 - value) * 2 - 1) * const + 1) / 2
self.random = easytruncnorm(0, 1, unbound, 0.25).rvs
def learn_all(self, items):
for item in items:
self.learn(item)
self.update()
def learn(self, item):
if self.type is None and item is not None:
self.type = type(item)
if type(item) is not self.type:
raise Exception("that's no good")
if self.type == type("string"):
item = item.strip()
if len(item) == 0:
return
pad = self.helper(self.padding) * self.order
item = pad + item + pad
stop = len(item) - self.order
if stop > 0:
for i in range(stop):
history, newitem = item[i:i+self.order], item[i+self.order]
self._machine[history][newitem] += 1
self.dirty = True
def update(self):
if self.dirty and self._machine:
self.machine = {hist:normalize(items)
for hist, items in self._machine.items()}
self.dirty = False
def next(self, history):
history = history[-self.order:]
dist = self.machine.get(history, None)
if dist == None:
lament('warning: no value: {}'.format(history))
return None
x = self.random(1)
for c, v in dist.items():
# if x <= v: # this is a bad idea
x = x - v[0]
if x <= 0:
return c
def helper(self, v):
return v
def reply(self, item=None, maxn=1000):
self.update()
history = self.helper(self.padding) * self.order
out = []
for i in range(maxn):
c = self.next(history)
if c.find(self.padding) != -1:
out.append(c.replace(self.padding, ''))
break
history = history[-self.order:] + self.helper(c)
out.append(c)
return out
def load(self, fn, raw=True):
import pickle
if type(fn) == type(''):
f = open(fn, 'rb')
else:
f = fn
d = pickle.load(f)
if d['order'] != self.order:
lament('warning: order mismatch. cancelling load.')
return
self.order = d['order']
if raw:
if not d.get('_machine'):
lament('warning: no _machine. cancelling load.')
return
self._machine = d['_machine']
self.dirty = True
self.update()
else:
if not d.get('machine'):
lament('warning: no machine. cancelling load.')
return
self.machine = d['machine']
self.new = False
if f != fn:
f.close()
def save(self, fn, raw=True):
import pickle
if type(fn) == type(''):
f = open(fn, 'wb')
else:
f = fn
d = {}
d['order'] = self.order
if raw:
d['_machine'] = self._machine
else:
d['machine'] = self.machine
pickle.dump(d, f)
if f != fn:
f.close()

18
misc.py Executable file
View file

@ -0,0 +1,18 @@
import sys
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
def die(*args, **kwargs):
lament(*args, **kwargs)
sys.exit(1)
def easytruncnorm(lower=0, upper=1, loc=0.5, scale=0.25):
import scipy.stats as stats
a = (lower - loc) / scale
b = (upper - loc) / scale
return stats.truncnorm(a=a, b=b, loc=loc, scale=scale)
# only make some things visible to "from misc import *"
__all__ = [o for o in locals() if type(o) != 'module' and not o.startswith('_')]