.
This commit is contained in:
parent
e02bca097c
commit
15d053789e
2 changed files with 14 additions and 8 deletions
0
resnet-1470729826.pkl
Executable file → Normal file
0
resnet-1470729826.pkl
Executable file → Normal file
22
resnet.py
22
resnet.py
|
@ -1,3 +1,8 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import keras.backend as K
|
||||
assert K.image_dim_ordering() == 'th'
|
||||
|
||||
import pickle, time
|
||||
import sys
|
||||
import numpy as np
|
||||
|
@ -6,7 +11,7 @@ from keras.datasets import mnist
|
|||
from keras.layers import BatchNormalization
|
||||
from keras.layers import Convolution2D, MaxPooling2D
|
||||
from keras.layers import Flatten, Reshape
|
||||
from keras.layers import Input, merge, Dense, Activation, Dropout
|
||||
from keras.layers import Input, merge, Dense, Activation
|
||||
from keras.models import Model
|
||||
from keras.utils.np_utils import to_categorical
|
||||
|
||||
|
@ -44,15 +49,16 @@ LRprod = 0.1**(1/20.) # will use a tenth of the learning rate after 20 epochs
|
|||
|
||||
use_image_generator = True
|
||||
|
||||
def prepare(X, y):
|
||||
X = X.reshape(X.shape[0], 1, width, height).astype('float32') / 255
|
||||
# convert class vectors to binary class matrices
|
||||
Y = to_categorical(y_train, nb_classes)
|
||||
return X, Y
|
||||
|
||||
# the data, shuffled and split between train and test sets
|
||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||
X_train = X_train.reshape(X_train.shape[0], 1, width, height)
|
||||
X_test = X_test.reshape(X_test.shape[0], 1, width, height)
|
||||
X_train = X_train.astype('float32') / 255
|
||||
X_test = X_test.astype('float32') / 255
|
||||
# convert class vectors to binary class matrices
|
||||
Y_train = to_categorical(y_train, nb_classes)
|
||||
Y_test = to_categorical(y_test, nb_classes)
|
||||
X_train, Y_train = prepare(X_train, y_train)
|
||||
X_test, Y_test = prepare(X_test, y_test)
|
||||
|
||||
if use_image_generator:
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
|
|
Loading…
Reference in a new issue