This commit is contained in:
Connor Olding 2017-01-05 04:55:10 -08:00
parent e02bca097c
commit 15d053789e
2 changed files with 14 additions and 8 deletions

0
resnet-1470729826.pkl Executable file → Normal file
View file

View file

@ -1,3 +1,8 @@
#!/usr/bin/env python3
import keras.backend as K
assert K.image_dim_ordering() == 'th'
import pickle, time
import sys
import numpy as np
@ -6,7 +11,7 @@ from keras.datasets import mnist
from keras.layers import BatchNormalization
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Flatten, Reshape
from keras.layers import Input, merge, Dense, Activation, Dropout
from keras.layers import Input, merge, Dense, Activation
from keras.models import Model
from keras.utils.np_utils import to_categorical
@ -44,15 +49,16 @@ LRprod = 0.1**(1/20.) # will use a tenth of the learning rate after 20 epochs
use_image_generator = True
def prepare(X, y):
X = X.reshape(X.shape[0], 1, width, height).astype('float32') / 255
# convert class vectors to binary class matrices
Y = to_categorical(y_train, nb_classes)
return X, Y
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 1, width, height)
X_test = X_test.reshape(X_test.shape[0], 1, width, height)
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
# convert class vectors to binary class matrices
Y_train = to_categorical(y_train, nb_classes)
Y_test = to_categorical(y_test, nb_classes)
X_train, Y_train = prepare(X_train, y_train)
X_test, Y_test = prepare(X_test, y_test)
if use_image_generator:
from keras.preprocessing.image import ImageDataGenerator