.
This commit is contained in:
parent
e02bca097c
commit
15d053789e
2 changed files with 14 additions and 8 deletions
0
resnet-1470729826.pkl
Executable file → Normal file
0
resnet-1470729826.pkl
Executable file → Normal file
22
resnet.py
22
resnet.py
|
@ -1,3 +1,8 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import keras.backend as K
|
||||||
|
assert K.image_dim_ordering() == 'th'
|
||||||
|
|
||||||
import pickle, time
|
import pickle, time
|
||||||
import sys
|
import sys
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -6,7 +11,7 @@ from keras.datasets import mnist
|
||||||
from keras.layers import BatchNormalization
|
from keras.layers import BatchNormalization
|
||||||
from keras.layers import Convolution2D, MaxPooling2D
|
from keras.layers import Convolution2D, MaxPooling2D
|
||||||
from keras.layers import Flatten, Reshape
|
from keras.layers import Flatten, Reshape
|
||||||
from keras.layers import Input, merge, Dense, Activation, Dropout
|
from keras.layers import Input, merge, Dense, Activation
|
||||||
from keras.models import Model
|
from keras.models import Model
|
||||||
from keras.utils.np_utils import to_categorical
|
from keras.utils.np_utils import to_categorical
|
||||||
|
|
||||||
|
@ -44,15 +49,16 @@ LRprod = 0.1**(1/20.) # will use a tenth of the learning rate after 20 epochs
|
||||||
|
|
||||||
use_image_generator = True
|
use_image_generator = True
|
||||||
|
|
||||||
|
def prepare(X, y):
|
||||||
|
X = X.reshape(X.shape[0], 1, width, height).astype('float32') / 255
|
||||||
|
# convert class vectors to binary class matrices
|
||||||
|
Y = to_categorical(y_train, nb_classes)
|
||||||
|
return X, Y
|
||||||
|
|
||||||
# the data, shuffled and split between train and test sets
|
# the data, shuffled and split between train and test sets
|
||||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||||
X_train = X_train.reshape(X_train.shape[0], 1, width, height)
|
X_train, Y_train = prepare(X_train, y_train)
|
||||||
X_test = X_test.reshape(X_test.shape[0], 1, width, height)
|
X_test, Y_test = prepare(X_test, y_test)
|
||||||
X_train = X_train.astype('float32') / 255
|
|
||||||
X_test = X_test.astype('float32') / 255
|
|
||||||
# convert class vectors to binary class matrices
|
|
||||||
Y_train = to_categorical(y_train, nb_classes)
|
|
||||||
Y_test = to_categorical(y_test, nb_classes)
|
|
||||||
|
|
||||||
if use_image_generator:
|
if use_image_generator:
|
||||||
from keras.preprocessing.image import ImageDataGenerator
|
from keras.preprocessing.image import ImageDataGenerator
|
||||||
|
|
Loading…
Add table
Reference in a new issue