70 lines
2.1 KiB
Python
70 lines
2.1 KiB
Python
import sys
|
|
import numpy as np
|
|
import scipy.signal as sig
|
|
|
|
dummy = lambda *args, **kwargs: None
|
|
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
|
|
|
|
toLK = lambda x: -0.691 + 10*np.log10(x)
|
|
isqrt2 = 1/np.sqrt(2)
|
|
toQ = lambda bw: isqrt2/bw
|
|
toA = lambda db: 10**(db/40)
|
|
|
|
tau = 2*np.pi
|
|
unwarp = lambda w: np.tan(w/2)
|
|
warp = lambda w: np.arctan(w)*2
|
|
|
|
ceil2 = lambda x: np.power(2, np.ceil(np.log2(x)))
|
|
pad2 = lambda x: np.r_[x, np.zeros(ceil2(len(x)) - len(x))]
|
|
|
|
rfft = lambda src, size: np.fft.rfft(src, size*2)
|
|
magnitude = lambda src, size: 10*np.log10(np.abs(rfft(src, size))**2)[0:size]
|
|
# x axis for plotting above magnitude
|
|
magnitude_x = lambda srate, size: np.arange(0, srate/2, srate/2/size)
|
|
|
|
degrees_clamped = lambda x: ((x*180/np.pi + 180) % 360) - 180
|
|
|
|
def xsp(precision=4096):
|
|
"""create #precision log-spaced points from 20 to 20480 Hz"""
|
|
# i opt not to use steps or linspace here,
|
|
# as the current method is less error-prone for me.
|
|
xs = np.arange(0,precision)/precision
|
|
return 20*1024**xs
|
|
|
|
def blocks(a, step, size=None):
|
|
"""break an iterable into chunks"""
|
|
if size is None:
|
|
size = step
|
|
for start in range(0, len(a), step):
|
|
end = start + size
|
|
if end > len(a):
|
|
break
|
|
yield a[start:end]
|
|
|
|
def convolve_each(s, fir, mode='same', axis=0):
|
|
return np.apply_along_axis(lambda s: sig.fftconvolve(s, fir, mode), axis, s)
|
|
|
|
def count_channels(s):
|
|
if len(s.shape) < 2:
|
|
return 1
|
|
return s.shape[1]
|
|
|
|
def monoize(s):
|
|
"""mixes an n-channel signal down to one channel.
|
|
technically, it averages a 2D array to be 1D.
|
|
existing mono signals are passed through unmodified."""
|
|
channels = count_channels(s)
|
|
if channels != 1:
|
|
s = np.sum(s, 1)
|
|
s /= channels
|
|
return s
|
|
|
|
def div0(a, b):
|
|
"""division, whereby division by zero equals zero"""
|
|
# http://stackoverflow.com/a/35696047
|
|
a = np.asanyarray(a)
|
|
b = np.asanyarray(b)
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
c = np.true_divide(a, b)
|
|
c[~np.isfinite(c)] = 0 # -inf inf NaN
|
|
return c
|