from . import tau, ceil2 import numpy as np def sweep(amp, length, begin=20, end=20480, method='linear'): method = method or 'linear' xs = np.arange(length)/length if method in ('linear', 'quadratic', 'logarithmic', 'hyperbolic'): ys = amp*sig.chirp(xs, begin, 1, end, method=method) elif method is 'sinesweep': # because xs ranges from 0:1, length is 1 and has been simplified out domain = np.log((tau * end)/(tau * begin)) ys = amp*np.sin((tau * begin)/domain*(np.exp(xs*domain) - 1)) return ys def tsp(N, m=0.5): """ OATSP(Optimized Aoshima's Time-Stretched Pulse) generator x = tsp( N, m ) N : length of the time-stretched pulse m : ratio of the swept sine (0 < m < 1) Author(s): Seigo UTO 8-23-95 Reference: Yoiti SUZUKI, Futoshi ASANO, Hack-Yoon KIM and Toshio SONE, "Considerations on the Design of Time-Stretched Pulses," Techical Report of IEICE, EA92-86(1992-12) """ # http://www.sound.sie.dendai.ac.jp/dsp/e-21.html if m < 0 or m > 1: raise Exception("what are you doinggg") if N < 0: raise Exception("The number of length must be the positive number") NN = ceil2(N) NN2 = NN // 2 M = int(np.round(NN2 * m)) # this has been tweaked to prevent overflow: s = np.square(np.arange(NN2 + 1) / NN) j = np.complex(0, 1) H = np.exp(j * 4 * M * np.pi * s) H2 = np.r_[H, np.conj(H[1:NN2][::-1])] x = np.fft.ifft(H2) x = np.r_[x[NN2 - M:NN + 1], x[0:NN2 - M + 1]] x = np.r_[x.real, np.zeros(N - NN)] return x