from . import blocks, convolve_each, gen_filters, cascades, bq_run, toLK import numpy as np import matplotlib.pyplot as plt def BS1770_3(s, srate, filters=None, window=0.4, overlap=0.75, gate=10, absolute_gate=70, detail=False): if filters is None: filters = gen_filters(cascades['1770'], srate) sf = np.copy(s) for f in filters: if len(f) is 2: # dumb way to tell what type we're given. sf = bq_run(f, sf) else: sf = convolve_each(sf, f, 'same') stepsize = round(window*srate*(1 - overlap)) blocksize = int(stepsize/(1 - overlap)) means = np.array([ np.sum(np.mean(b**2, axis=0)) for b in blocks(sf, stepsize, blocksize) ]) LKs = toLK(means) gated = LKs > -absolute_gate means_g70 = means[gated] avg_g70 = np.average(means_g70) threshold = toLK(avg_g70) - gate means_g10 = means[gated | (LKs > threshold)] avg_g10 = np.average(means_g10) if detail is False: return toLK(avg_g10) else: return toLK(avg_g10), toLK(avg_g70), LKs, threshold def BS_plot(ys, g10=None, g70=None, threshold=None, fig=None, ax=None): if g10: center = np.round(g10) bins = np.arange(center - 10, center + 10.01, 0.25) else: bins = np.arange(-70, 0.1, 1) if fig is None: fig = plt.figure() if ax is None: ax = fig.gca() if False: # histogram ax.hist(ys, bins=bins, normed=True, facecolor='g', alpha=0.5) ax.xlim(bins[0], bins[-1]) ax.ylim(0, 1) ax.grid(True, 'both') ax.xlabel('loudness (LKFS)') ax.ylabel('probability') fig.set_size_inches(10, 4) xs = np.arange(len(ys)) # ax.plot(xs, ys, color='#066ACF', linestyle=':', marker='d', markersize=2) ax.plot(xs, ys, color='#1459E0') ax.set_xlim(xs[0], xs[-1]) ax.set_ylim(-70, 0) ax.grid(True, 'both', 'y') ax.set_xlabel('bin') ax.set_ylabel('loudness (LKFS)') fig.set_size_inches(12, 5) # _, _, ymin, _ = ax.axis() if threshold: ax.axhspan(-70, threshold, facecolor='r', alpha=1/5) if g10: ax.axhline(g10, color='g') if g70: ax.axhline(g70, color='0.3') return fig, ax def normalize(s, srate): """performs BS.1770-3 normalization and returns inverted gain.""" db = BS1770_3(s, srate) rms = 10**(db/20) return s/rms, rms