update 38

This commit is contained in:
Connor Olding 2018-02-19 04:04:28 -08:00
parent 1ceab58844
commit ec40a745f5

View file

@ -31,10 +31,29 @@ def smoothfft2(xs, ys, bw=1, precision=512, compensate=True):
# before optimizations: dist = np.abs(np.log2(xs2/(x + 1e-35)))/bw
dist = np.abs(log2_xs2 - np.log2(x + 1e-35))/bw
# window = np.maximum(0, 1 - dist) # triangle window
window = np.exp(-dist**2/(0.5/2)) # gaussian function (non-truncated)
window = np.exp(-dist**2/(0.5/2)) # gaussian window (non-truncated)
ys2 += ys[i]*window
if compensate:
_, temp = smoothfft2(xs, np.ones(len(xs)),
bw=bw, precision=precision, compensate=False)
ys2 /= temp
return xs2, ys2
def smoothfft3(ys, bw=1, precision=512):
"""performs log-lin smoothing on magnitude data"""
size = len(ys)
xs = np.arange(0, 1, 1/size)
xs2 = np.logspace(-np.log2(size), 1, precision, base=2)
ys2 = np.zeros(precision)
comp = np.zeros(precision)
log2_xs2 = np.log2(xs2)
for i, x in enumerate(xs):
dist = np.abs(log2_xs2 - np.log2(x + 1e-35)) / bw
window = np.exp(-dist**2 * 4) # gaussian window (non-truncated)
comp += window
ys2 += ys[i] * window
return xs2, ys2 / comp