From c91bbe3e7b72132333ef1cbabb75f4bc60e9bec6 Mon Sep 17 00:00:00 2001 From: Connor Olding Date: Sun, 5 Jun 2016 04:04:43 -0700 Subject: [PATCH] update 27 --- lib/scrap.py | 82 ---------------------------------------------------- 1 file changed, 82 deletions(-) delete mode 100644 lib/scrap.py diff --git a/lib/scrap.py b/lib/scrap.py deleted file mode 100644 index 96f0b13..0000000 --- a/lib/scrap.py +++ /dev/null @@ -1,82 +0,0 @@ - from nolearn.lasagne import NeuralNet, BatchIterator - from lasagne.layers import InputLayer as Input - from lasagne.layers import DropoutLayer as Dropout - from lasagne.layers import DenseLayer as Dense - from lasagne.layers import RecurrentLayer as RNN - from lasagne.layers import LSTMLayer as LSTM - from lasagne.layers import GRULayer as GRU - from lasagne.layers import ReshapeLayer as Reshape - from lasagne.layers import EmbeddingLayer as Embedding - from lasagne.layers import NonlinearityLayer as Nonlinearity - from lasagne.nonlinearities import softmax - from lasagne.objectives import categorical_crossentropy - from lasagne.updates import adam - - - elif 0: - # TODO: consider using to_categorical instead - #from keras.utils.np_utils import to_categorical - x = np.array(seq_text[:newlen], dtype='int32').reshape((-1, seq_length)) - # Generate input and output per substring, as an indicator matrix. - y = np.zeros((x.shape[0], x.shape[1], self.vocab_size), dtype='bool') - for i in np.arange(x.shape[0]): - for j in np.arange(x.shape[1]): - y[i, j, x[i, j]] = 1 - - # push a padding character to the front of the inputs. - # this effectively maps x[a,b,c]'s next character to y[a,b,c] - x = np.roll(y, 1, axis=1) - x[:, 0, :] = 0 - x[:, 0, 0] = 1 - - vx = x - vy = y - else: - # TODO: handle dtype more elegantly - #vx = seq_text[0:newlen + 0] - #vy = seq_text[1:newlen + 1] - vy = seq_text[:newlen] - vx = np.roll(vy, 1) - vx[0] = 0 # remember we assert that 0 corresponds to PADDING in Translator - - # stuff in the original LanguageModel.lua that we don't need - #vx = vx.reshape(batch_size, -1, self.seq_length) - #vy = vy.reshape(batch_size, -1, self.seq_length) - #vx = vx.transpose([1, 0, 2]) - #vy = vy.transpose([1, 0, 2]) - - # this is good enough - vx = vx.reshape(-1, self.seq_length) - vy = vy.reshape(-1, self.seq_length) - vx = np.array(vx, dtype=np.uint8) - vy = np.array(vy, dtype=np.uint8) - - - - sentence = text[start_index:start_index + seq_length] - generated = sentence - lament('## Generating') - sys.stdout.write(generated) - sys.stdout.write('~') # PADDING - - was_pad = True - for i in range(sample_chars): - x = np.zeros((1, seq_length, textmap.vocab_size), dtype=np.bool) - for t, char in enumerate(sentence): - x[0, t, textmap.map(char)] = 1 - - preds = model.predict(x, batch_size=1, verbose=0)[0] - next_index = asample(preds, temperature) - next_char = textmap.unmap(next_index)[0] - - generated += next_char - sentence = sentence[1:] + next_char - - is_pad = next_char == PADDING - sys.stdout.write(next_char) - if is_pad and not was_pad: - sys.stdout.write('\n') - sys.stdout.flush() - - was_pad = is_pad - lament()