54 lines
1.5 KiB
Python
54 lines
1.5 KiB
Python
|
import sys
|
||
|
import numpy as np
|
||
|
import scipy.signal as sig
|
||
|
|
||
|
dummy = lambda *args, **kwargs: None
|
||
|
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
|
||
|
|
||
|
toLK = lambda x: -0.691 + 10*np.log10(x)
|
||
|
isqrt2 = 1/np.sqrt(2)
|
||
|
toQ = lambda bw: isqrt2/bw
|
||
|
toA = lambda db: 10**(db/40)
|
||
|
|
||
|
tau = 2*np.pi
|
||
|
unwarp = lambda w: np.tan(w/2)
|
||
|
warp = lambda w: np.arctan(w)*2
|
||
|
|
||
|
rfft = lambda src, size: np.fft.rfft(src, size*2)
|
||
|
magnitude = lambda src, size: 10*np.log10(np.abs(rfft(src, size))**2)[0:size]
|
||
|
|
||
|
def xsp(precision=4096):
|
||
|
"""create #precision log-spaced points from 20 to 20480 Hz"""
|
||
|
# i opt not to use steps or linspace here,
|
||
|
# as the current method is less error-prone for me.
|
||
|
xs = np.arange(0,precision)/precision
|
||
|
return 20*1024**xs
|
||
|
|
||
|
def blocks(a, step, size=None):
|
||
|
"""break an iterable into chunks"""
|
||
|
if size is None:
|
||
|
size = step
|
||
|
for start in range(0, len(a), step):
|
||
|
end = start + size
|
||
|
if end > len(a):
|
||
|
break
|
||
|
yield a[start:end]
|
||
|
|
||
|
def convolve_each(s, fir, mode=None, axis=0):
|
||
|
return np.apply_along_axis(lambda s: sig.fftconvolve(s, fir, mode), axis, s)
|
||
|
|
||
|
def count_channels(s):
|
||
|
if len(s.shape) < 2:
|
||
|
return 1
|
||
|
return s.shape[1]
|
||
|
|
||
|
def monoize(s):
|
||
|
"""mixes an n-channel signal down to one channel.
|
||
|
technically, it averages a 2D array to be 1D.
|
||
|
existing mono signals are passed through unmodified."""
|
||
|
channels = count_channels(s)
|
||
|
if channels != 1:
|
||
|
s = np.sum(s, 1)
|
||
|
s /= channels
|
||
|
return s
|